Call Us : (404) 474-8715 / (404) IRG-8715

Industrial Controls Repair

18
Aug

Service

Industrial Repair Group delivers fast and reliable VFD Drive Repair (Variable Frequency Drive) Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your VFD Drive Repair (Variable Frequency Drive). We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a VFD Drive Repair (Variable Frequency Drive) Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all VFD Drive Repair (Variable Frequency Drive)
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Get a VFD Drive Repair (Variable Frequency Drive) Quote

Shipping Information
2

Get the VFD Drive Repair (Variable Frequency Drive) Service Advantage

  • Every VFD Drive Repair (Variable Frequency Drive) comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every VFD Drive Repair (Variable Frequency Drive)

Every VFD Drive Repair (Variable Frequency Drive) is subjected to dynamic function testings to verify a successful repair and then backed by an Industrial Repair Group 18 Month Repair Warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each VFD Drive Repair (Variable Frequency Drive) to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Get a Repair Quote

Get a Fast Quote for your [php] the_title(); [/php] now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How Variable Freq. Drives Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How Variable Frequency Drives Operate, please follow this link: IRG-Variable-Frequency-Drive

[/REMIX]

How Variable-Frequency Drives Operate

A variable-frequency drive (VFD) is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor.[1][2][3] A variable frequency drive is a specific type of adjustable-speed drive. Variable-frequency drives are also known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives, microdrives or inverter drives. Since the voltage is varied along with frequency, these are sometimes also called VVVF (variable voltage variable frequency) drives.

Variable-frequency drives are widely used. In ventilation systems for large buildings, variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. They are also used on pumps, elevator, conveyor and machine tool drives.

VFD types

All VFDs use their output devices (IGBTs, transistors, thyristors) only as switches, turning them only on or off. Using a linear device such as a transistor in its linear mode is impractical for a VFD drive, since the power dissipated in the drive devices would be about as much as the power delivered to the load.

Drives can be classified as:

  • Constant voltage
  • Constant current
  • Cycloconverter

In a constant voltage converter, the intermediate DC link voltage remains approximately constant during each output cycle. In constant current drives, a large inductor is placed between the input rectifier and the output bridge, so the current delivered is nearly constant. A cycloconverter has no input rectifier or DC link and instead connects each output terminal to the appropriate input phase.

The most common type of packaged VF drive is the constant-voltage type, using pulse width modulation to control both the frequency and effective voltage applied to the motor load.

VFD system description

VFD system

A variable frequency drive system generally consists of an AC motor, a controller and an operator interface.[4][5]

VFD motor

The motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors can be used, but three-phase motors are usually preferred. Various types of synchronous motors offer advantages in some situations, but induction motors are suitable for most purposes and are generally the most economical choice. Motors that are designed for fixed-speed operation are often used. Certain enhancements to the standard motor designs offer higher reliability and better VFD performance, such as MG-31 rated motors.[6]

VFD controller

Variable frequency drive controllers are solid state electronic power conversion devices. The usual design first converts AC input power to DC intermediate power using a rectifier or converter bridge. The rectifier is usually a three-phase, full-wave-diode bridge. The DC intermediate power is then converted to quasi-sinusoidal AC power using an inverter switching circuit. The inverter circuit is probably the most important section of the VFD, changing DC energy into three channels of AC energy that can be used by an AC motor. These units provide improved power factor, less harmonic distortion, and low sensitivity to the incoming phase sequencing than older phase controlled converter VFD’s. Since incoming power is converted to DC, many units will accept single-phase as well as three-phase input power (acting as a phase converter as well as a speed controller); however the unit must be derated when using single phase input as only part of the rectifier bridge is carrying the connected load.[7]

As new types of semiconductor switches have been introduced, these have promptly been applied to inverter circuits at all voltage and current ratings for which suitable devices are available. Introduced in the 1980s, the insulated-gate bipolar transistor (IGBT) became the device used in most VFD inverter circuits in the first decade of the 21st century.[8][9][10]

AC motor characteristics require the applied voltage to be proportionally adjusted whenever the frequency is changed in order to deliver the rated torque. For example, if a motor is designed to operate at 460 volts at 60 Hz, the applied voltage must be reduced to 230 volts when the frequency is reduced to 30 Hz. Thus the ratio of volts per hertz must be regulated to a constant value (460/60 = 7.67 V/Hz in this case). For optimum performance, some further voltage adjustment may be necessary especially at low speeds, but constant volts per hertz is the general rule. This ratio can be changed in order to change the torque delivered by the motor.[11]

In addition to this simple volts per hertz control more advanced control methods such as vector control and direct torque control (DTC) exist. These methods adjust the motor voltage in such a way that the magnetic flux and mechanical torque of the motor can be precisely controlled.

The usual method used to achieve variable motor voltage is pulse-width modulation (PWM). With PWM voltage control, the inverter switches are used to construct a quasi-sinusoidal output waveform by a series of narrow voltage pulses with pseudosinusoidal varying pulse durations.[8][12]

Operation of the motors above rated name plate speed (base speed) is possible, but is limited to conditions that do not require more power than nameplate rating of the motor. This is sometimes called “field weakening” and, for AC motors, means operating at less than rated volts/hertz and above rated name plate speed. Permanent magnet synchronous motors have quite limited field weakening speed range due to the constant magnet flux linkage. Wound rotor synchronous motors and induction motors have much wider speed range. For example, a 100 hp, 460 V, 60 Hz, 1775 RPM (4 pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power.[13] At higher speeds the induction motor torque has to be limited further due to the lowering of the breakaway torque of the motor. Thus rated power can be typically produced only up to 130…150 % of the rated name plate speed. Wound rotor synchronous motors can be run even higher speeds. In rolling mill drives often 200…300 % of the base speed is used. Naturally the mechanical strength of the rotor and lifetime of the bearings is also limiting the maximum speed of the motor. It is recommended to consult the motor manufacturer if more than 150 % speed is required by the application.

PWM VFD Output Voltage Waveform

An embedded microprocessor governs the overall operation of the VFD controller. The main microprocessor programming is in firmware that is inaccessible to the VFD user. However, some degree of configuration programming and parameter adjustment is usually provided so that the user can customize the VFD controller to suit specific motor and driven equipment requirements.[8]

VFD operator interface

The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed. Additional operator control functions might include reversing and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display and/or indication lights and meters to provide information about the operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting pushbuttons, switches and other operator interface devices or control signals. A serial communications port is also often available to allow the VFD to be configured, adjusted, monitored and controlled using a computer.[8][14][15]

VFD operation

When an induction motor is connected to a full voltage supply, it draws several times (up to about 6 times) its rated current. As the load accelerates, the available torque usually drops a little and then rises to a peak while the current remains very high until the motor approaches full speed.

By contrast, when a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The starting frequency is typically 2 Hz or less. Thus starting at such a low frequency avoids the high inrush current that occurs when a motor is started by simply applying the utility (mains) voltage by turning on a switch. After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load without drawing excessive current. This starting method typically allows a motor to develop 150% of its rated torque while the VFD is drawing less than 50% of its rated current from the mains in the low speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed.[16] Note, however, that cooling of the motor is usually not good in the low speed range. Thus running at low speeds even with rated torque for long periods is not possible due to overheating of the motor. If continuous operation with high torque is required in low speeds an external fan is usually needed. The manufacturer of the motor and/or the VFD should specify the cooling requirements for this mode of operation.

In principle, the current on the motor side is in direct proportion of the torque that is generated and the voltage on the motor is in direct proportion of the actual speed, while on the network side, the voltage is constant, thus the current on line side is in direct proportion of the power drawn by the motor, that is U.I or C.N where C is torque and N the speed of the motor (we shall consider losses as well, neglected in this explanation).

(1) n stands for network (grid) and m for motor

(2) C stands for torque [Nm], U for voltage [V], I for current [A], and N for speed [rad/s]

We neglect losses for the moment :

Un.In = Um.Im (same power drawn from network and from motor)

Um.Im = Cm.Nm (motor mechanical power = motor electrical power)

Given Un is a constant (network voltage) we conclude : In = Cm.Nm/Un That is “line current (network) is in direct proportion of motor power”.

With a VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding a braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With 4-quadrants rectifiers (active-front-end), the VFD is able to brake the load by applying a reverse torque and reverting the energy back to the network.

Power line harmonics

While PWM allows for nearly sinusoidal currents to be applied to a motor load, the diode rectifier of the VFD takes roughly square-wave current pulses out of the AC grid, creating harmonic distortion in the power line voltage. When the VFD load size is small and the available utility power is large, the effects of VFD systems slicing small chunks out of AC grid generally go unnoticed. Further, in low voltage networks the harmonics caused by single phase equipment such as computers and TVs are such that they are partially cancelled by three-phase diode bridge harmonics.

However, when either a large number of low-current VFDs, or just a few very large-load VFDs are used, they can have a cumulative negative impact on the AC voltages available to other utility customers in the same grid.

When the utility voltage becomes misshapen and distorted the losses in other loads such as normal AC motors are increased. This may in the worst case lead to overheating and shorter operation life. Also substation transformers and compensation capacitors are affected, the latter especially if resonances are aroused by the harmonics.

In order to limit the voltage distortion the owner of the VFDs may be required to install filtering equipment to smooth out the irregular waveform. Alternately, the utility may choose to install filtering equipment of its own at substations affected by the large amount of VFD equipment being used. In high power installations decrease of the harmonics can be obtained by supplying the VSDs from transformers that have different phase shift.[17]

Further, it is possible to use instead of the diode rectifier a similar transistor circuit that is used to control the motor. This kind of rectifier is called active infeed converter in IEC standards. However, manufacturers call it by several names such as active rectifier, ISU (IGBT Supply Unit), AFE (Active Front End) or four quadrant rectifier. With PWM control of the transistors and filter inductors in the supply lines the AC current can be made nearly sinusoidal. Even better attenuation of the harmonics can be obtained by using an LCL (inductor-capacitor-inductor) filter instead of single three-phase filter inductor.

Additional advantage of the active infeed converter over the diode bridge is its ability to feed back the energy from the DC side to the AC grid. Thus no braking resistor is needed and the efficiency of the drive is improved if the drive is frequently required to brake the motor.

Application considerations

The output voltage of a PWM VFD consists of a train of pulses switched at the carrier frequency. Because of the rapid rise time of these pulses, transmission line effects of the cable between the drive and motor must be considered. Since the transmission-line impedance of the cable and motor are different, pulses tend to reflect back from the motor terminals into the cable. The resulting voltages can produce up to twice the rated line voltage for long cable runs, putting high stress on the cable and motor winding and eventual insulation failure. Increasing the cable or motor size/type for long runs and 480v or 600v motors will help offset the stresses imposed upon the equipment due to the VFD (modern 230v single phase motors not effected). At 460 V, the maximum recommended cable distances between VFDs and motors can vary by a factor of 2.5:1. The longer cables distances are allowed at the lower Carrier Switching Frequencies (CSF) of 2.5 kHz. The lower CSF can produce audible noise at the motors. For applications requiring long motor cables VSD manufacturers usually offer du/dt filters that decrease the steepness of the pulses. For very long cables or old motors with insufficient winding insulation more efficient sinus filter is recommended. Expect the older motor’s life to shorten. Purchase VFD rated motors for the application.

Further, the rapid rise time of the pulses may cause trouble with the motor bearings. The stray capacitance of the windings provide paths for high frequency currents that close through the bearings. If the voltage between the shaft and the shield of the motor exceeds few volts the stored charge is discharged as a small spark. Repeated sparking causes erosion in the bearing surface that can be seen as fluting pattern. In order to prevent sparking the motor cable should provide a low impedance return path from the motor frame back to the inverter. Thus it is essential to use a cable designed to be used with VSDs.[18]

In big motors a slip ring with brush can be used to provide a bypass path for the bearing currents. Alternatively isolated bearings can be used.

The 2.5 kHz and 5 kHz CSFs cause fewer motor bearing problems than the 20 kHz CSFs.[19] Shorter cables are recommended at the higher CSF of 20 kHz. The minimum CSF for synchronize tracking of multiple conveyors is 8 kHz.

The high frequency current ripple in the motor cables may also cause interference with other cabling in the building. This is another reason to use a motor cable designed for VSDs that has a symmetrical three-phase structure and good shielding. Further, it is highly recommended to route the motor cables as far away from signal cables as possible.[20]

Available VFD power ratings

Variable frequency drives are available with voltage and current ratings to match the majority of 3-phase motors that are manufactured for operation from utility (mains) power. VFD controllers designed to operate at 111 V to 690 V are often classified as low voltage units. Low voltage units are typically designed for use with motors rated to deliver 0.2 kW or 1/4 horsepower (hp) up to several megawatts. For example, the largest ABB ACS800 single drives are rated for 5.6 MW[21] . Medium voltage VFD controllers are designed to operate at 2,400/4,162 V (60 Hz), 3,000 V (50 Hz) or up to 10 kV. In some applications a step up transformer is placed between a low voltage drive and a medium voltage load. Medium voltage units are typically designed for use with motors rated to deliver 375 kW or 500 hp and above. Medium voltage drives rated above 7 kV and 5,000 or 10,000 hp should probably be considered to be one-of-a-kind (one-off) designs.[22]

Medium voltage drives are generally rated amongst the following voltages : 2,3 KV – 3,3 Kv – 4 Kv – 6 Kv – 11 Kv

The in-between voltages are generally possible as well. The power of MV drives is generally in the range of 0,3 to 100 MW however involving a range a several different type of drives with different technologies.

Dynamic braking

Using the motor as a generator to absorb energy from the system is called dynamic braking. Dynamic braking stops the system more quickly than coasting. Since dynamic braking requires relative motion of the motor’s parts, it becomes less effective at low speed and cannot be used to hold a load at a stopped position. During normal braking of an electric motor the electrical energy produced by the motor is dissipated as heat inside of the rotor, which increases the likelihood of damage and eventual failure. Therefore, some systems transfer this energy to an outside bank of resistors. Cooling fans may be used to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off.[23]

Regenerative variable-frequency drives

Regenerative AC drives have the capacity to recover the braking energy of an overhauling load and return it to the power system.[24]

Line regenerative variable frequency drives, showing capacitors(top cylinders)and inductors attached which filter the regenerated power.

[2][3][24][25][26][27]

Cycloconverters and current-source inverters inherently allow return of energy from the load to the line; voltage-source inverters require an additional converter to return energy to the supply.[28]

Regeneration is only useful in variable-frequency drives where the value of the recovered energy is large compared to the extra cost of a regenerative system,[28] and if the system requires frequent braking and starting. An example would be use in conveyor belt during manufacturing where it should stop for every few minutes, so that the parts can be assembled correctly and moves on. Another example is a crane, where the hoist motor stops and reverses frequently, and braking is required to slow the load during lowering. Regenerative variable-frequency drives are widely used where speed control of overhauling loads is required.

Brushless DC motor drives

Much of the same logic contained in large, powerful VFDs is also embedded in small brushless DC motors such as those commonly used in computer fans. In this case, the chopper usually converts a low DC voltage (such as 12 volts) to the three-phase current used to drive the electromagnets that turn the permanent magnet rotor. Why do dogs love VFD’s.

See also

  • Regenerative variable-Frequency drives
  • Direct torque control
  • Frequency changer
  • Space Vector Modulation
  • Variable speed air compressor
  • Vector control (motor)
Category : AC Drive Repair | AC, DC, VFD, Servo Drives | DC Drive Repair | Electronic repair service | Industrial Controls Repair | Industrial Repair Group | VFD Drive Repair | Blog
23
Dec

Stober Drive Repair Service by Industrial Repair Group Service by Industrial Repair Group

Industrial Repair Group delivers fast and reliable Stober Drive Repair Service by Industrial Repair Group Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your Stober Drive Repair Service by Industrial Repair Group. We are here to help!


A Trusted Leader in Industrial Electronic Repairs

1

Request a Stober Drive Repair Service by Industrial Repair Group Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all Stober Drive Repair Service by Industrial Repair Group
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Stober Drive Repair Service by Industrial Repair Group Quote Shipping Information
2

Get the Stober Drive Repair Service by Industrial Repair Group Service Advantage

  • Every Stober Drive Repair Service by Industrial Repair Group comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every Stober Drive Repair Service by Industrial Repair Group

Every Stober Drive Repair Service by Industrial Repair Group is subjected to dynamic function testings to verify a successful repair and then backed by an IRG 18 month repair warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each Stober Drive Repair Service by Industrial Repair Group to restore your equipment back to its' OEM specs.


Call us today for a free consultation on your Stober Drive Repair Service by Industrial Repair Group!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Category : AC, DC, VFD, Servo Drives | Electronic repair service | Industrial Controls Repair | Blog
22
Sep

Service

Industrial Repair Group delivers fast and reliable Car Wash Electronic Repair Service by Industrial Repair Group Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your Car Wash Electronic Repair Service by Industrial Repair Group. We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a Car Wash Electronic Repair Service by Industrial Repair Group Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all Car Wash Electronic Repair Service by Industrial Repair Group
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Get a Car Wash Electronic Repair Service by Industrial Repair Group Quote

Shipping Information
2

Get the Car Wash Electronic Repair Service by Industrial Repair Group Service Advantage

  • Every Car Wash Electronic Repair Service by Industrial Repair Group comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every Car Wash Electronic Repair Service by Industrial Repair Group

Every Car Wash Electronic Repair Service by Industrial Repair Group is subjected to dynamic function testings to verify a successful repair and then backed by an Industrial Repair Group 18 Month Repair Warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each Car Wash Electronic Repair Service by Industrial Repair Group to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Get a Repair Quote

Get a Fast Quote for your Circuit Board Repair now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How Circuit Boards Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How Circuit Boards Operate, please follow this link: IRG-Circuit-Boards

[/REMIX]

 

Part of a 1983 Sinclair ZX Spectrum computer board; a populated PCB, showing the conductive traces, vias (the through-hole paths to the other surface), and some mounted electrical components

A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA). Printed circuit boards are used in virtually all but the simplest commercially-produced electronic devices.

PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire wrap or point-to-point construction, but are much cheaper and faster for high-volume production; the production and soldering of PCBs can be done by totally automated equipment. Much of the electronics industry’s PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.

History

The inventor of the printed circuit was the Austrian engineer Paul Eisler who, while working in England, made one circa 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make rugged radios for use in World War II. After the war, in 1948, the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.

Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove’s 1936-1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.

During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.[1]

Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components’ leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful since drilling holes is expensive and the protruding wires are merely cut off.

In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown.

Manufacturing

Materials

 

A PCB as a design on a computer (left) and realized as a board assembly populated with components (right). The board is double sided, with through-hole plating, green solder resist, and white silkscreen printing. Both surface mount and through-hole components have been used.

 

A PCB in a computer mouse. The Component Side (left) and the printed side (right).

 

The Component Side of a PCB in a computer mouse; some examples for common components and their reference designations on the silk screen.

Conducting layers are typically made of thin copper foil. Insulating layers dielectric are typically laminated together with epoxy resin prepreg. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue, black, white and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability.

FR-4 is by far the most common material used today. The board with copper on it is called “copper-clad laminate”.

Copper foil thickness can be specified in ounces per square foot or micrometres. One ounce per square foot is 1.344 mils or 34 micrometres.

Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper over the entire substrate, sometimes on both sides, (creating a “blank PCB”) then removing unwanted copper after applying a temporary mask (e.g. by etching), leaving only the desired copper traces. A few PCBs are made by adding traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. The PCB manufacturing method primarily depends on whether it is for production volume or sample/prototype quantities.

Commercial (production quantities, usually PTH)

  • silk screen printing -the main commercial method.
  • Photographic methods. Used when fine linewidths are required.

Hobbyist/prototype (small quantities, usually not PTH)

  • Laser-printed resist: Laser-print onto paper (or wax paper), heat-transfer with an iron or modified laminator onto bare laminate, then etch.
  • Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e. pre-sensitized boards), Then etch. (Alternatively, use a film photoplotter).
  • Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.)
  • Use a CNC-mill with a spade-shaped (i.e. 45-degree) cutter or miniature end-mill to route away the undesired copper, leaving only the traces.

There are three common “subtractive” methods (methods that remove copper) used for the production of printed circuit boards:

  1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.
  2. Photoengraving uses a photomask and developer to selectively remove a photoresist coating. The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements.
  3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a ‘PCB Prototyper’) operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.

“Additive” processes also exist. The most common is the “semi-additive” process. In this version, the unpatterned board has a thin layer of copper already on it. A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed original copper laminate from the board, isolating the individual traces. Some boards with plated through holes but still single sided were made with a process like this. General Electric made consumer radio sets in the late 1960s using boards like these.

The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes (to produce conductive vias) in the circuit board.

  • PCB copper electroplating machine for adding copper to the in-process PCB

  • PCB’s in process of adding copper via electroplating

The dimensions of the copper conductors of the printed circuit board is related to the amount of current the conductor must carry. Each trace consists of a flat, narrow part of the copper foil that remains after etching. Signal traces are usually narrower than power or ground traces because their current carrying requirements are usually much less. In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For printed circuit boards that contain microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully-controlled dimensions to assure a consistent impedance. In radio-frequency circuits the inductance and capacitance of the printed circuit board conductors can be used as a delibrate part of the circuit design, obviating the need for additional discrete components.

Etching

Chemical etching is done with ferric chloride, ammonium persulfate, or sometimes hydrochloric acid. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin/lead. The tin/lead becomes the resist leaving the bare copper to be etched away.

Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer PCBs. These are formed by bonding together separately etched thin boards.

Drilling

Holes through a PCB are typically drilled with tiny drill bits made of solid tungsten carbide. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or “Excellon files”. The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.

Most common laminate is epoxy filled fiberglass. Drill bit wear is partly due to embedded glass, which is harder than steel. High drill speed necessary for cost effective drilling of hundreds of holes per board causes very high temperatures at the drill bit tip, and high temperatures (400-700 degrees) soften steel and decompose (oxidize) laminate filler. Copper is softer than epoxy and interior conductors may suffer damage during drilling.

When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.

The walls of the holes, for boards with 2 or more layers, are made conductive then plated with copper to form plated-through holes that electrically connect the conducting layers of the PCB. For multilayer boards, those with 4 layers or more, drilling typically produces a smear of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this smear must be removed by a chemical de-smear process, or by plasma-etch. Removing (etching back) the smear also reveals the interior conductors as well.

Exposed conductor plating and coating

PCBs[2] are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.[3]

After PCBs are etched and then rinsed with water, the soldermask is applied, and then any exposed copper is coated with solder, nickel/gold, or some other anti-corrosion coating.[4][5]

Matte solder is usually fused to provide a better bonding surface or stripped to bare copper. Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface.[6] This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead. One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium.

It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste.

Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold plating (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating and/or leaving voids.

Electrochemical migration (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias.[7][8] Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow “whiskers” due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence. Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.[9]

Solder resist

Areas that should not be soldered may be covered with a polymer solder resist (solder mask) coating. The solder resist prevents solder from bridging between conductors and creating short circuits. Solder resist also provides some protection from the environment. Solder resist is typically 20-30 micrometres thick.

Screen printing

Line art and text may be printed onto the outer surfaces of a PCB by screen printing. When space permits, the screen print text can indicate component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board.

Screen print is also known as the silk screen, or, in one sided PCBs, the red print.

Lately some digital printing solutions have been developed to substitute the traditional screen printing process. This technology allows printing variable data onto the PCB, including serialization and barcode information for traceability purposes.

Test

Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a Bed of nails tester, a fixture or a Rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A “short” on a board would be a connection where there should not be one; an “open” is between two points that should be connected but are not. For small- or medium-volume boards, flying probe and flying-grid testers use moving test heads to make contact with the copper/silver/gold/solder lands or holes to verify the electrical connectivity of the board under test.

Printed circuit assembly

After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly,[10][11] or PCA (sometimes called a “printed circuit board assembly” PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount construction, the components are placed on pads or lands on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder.

There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with machine placement and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.)[12] by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts are impossible to solder by hand, such as ball grid array (BGA) packages.

Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques.

After the board has been populated it may be tested in a variety of ways:

  • While the power is off, visual inspection, automated optical inspection. JEDEC guidelines for PCB component placement, soldering, and inspection are commonly used to maintain quality control in this stage of PCB manufacturing.
  • While the power is off, analog signature analysis, power-off testing.
  • While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done.
  • While the power is on, functional test, just checking if the PCB does what it had been designed for.

To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors. The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board.

In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard. The JTAG test architecture provides a means to test interconnects between integrated circuits on a board without using physical test probes. JTAG tool vendors provide various types of stimulus and sophisticated algorithms, not only to detect the failing nets, but also to isolate the faults to specific nets, devices, and pins.[13]

When boards fail the test, technicians may desolder and replace failed components, a task known as rework.

Protection and packaging

PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult.[14]

Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it’s quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs.

Design

  • Schematic capture or schematic entry is done through an EDA tool.
  • Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required.
  • Deciding stack layers of the PCB. 4 to 12 layers or more depending on design complexity. Ground plane and Power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers.[15]
  • Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width. Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals.
  • Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked.
  • Routing the signal trace. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power plane behaves as ground for AC.
  • Gerber file generation for manufacturing.

Safety certification (US)

Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts.

“Cordwood” construction

 

A cordwood module.

Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers, where short traces were important. In “cordwood” construction, axial-leaded components were mounted between two parallel planes. The components were either soldered together with jumper wire, or they were connected to other components by thin nickel ribbon welded at right angles onto the component leads. To avoid shorting together different interconnection layers, thin insulating cards were placed between them. Perforations or holes in the cards allowed component leads to project through to the next interconnection layer. One disadvantage of this system was that special nickel leaded components had to be used to allow the interconnecting welds to be made. Some versions of cordwood construction used single sided PCBs as the interconnection method (as pictured). This meant that normal leaded components could be used. Another disadvantage of this system is that components located in the interior are difficult to replace.

Before the advent of integrated circuits, this method allowed the highest possible component packing density; because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction now appears to have fallen into disuse, probably because high packing densities can be more easily achieved using surface mount techniques and integrated circuits.

Multiwire boards

Multiwire is a patented technique of interconnection which uses machine-routed insulated wires embedded in a non-conducting matrix (often plastic resin). It was used during the 1980s and 1990s. (Kollmorgen Technologies Corp., U.S. Patent 4,175,816) Multiwire is still available in 2010 through Hitachi. There are other competitive discrete wiring technologies that have been developed (Jumatech [2]).

Since it was quite easy to stack interconnections (wires) inside the embedding matrix, the approach allowed designers to forget completely about the routing of wires (usually a time-consuming operation of PCB design): Anywhere the designer needs a connection, the machine will draw a wire in straight line from one location/pin to another. This led to very short design times (no complex algorithms to use even for high density designs) as well as reduced crosstalk (which is worse when wires run parallel to each other—which almost never happens in Multiwire), though the cost is too high to compete with cheaper PCB technologies when large quantities are needed.

Surface-mount technology

Main article: Surface-mount technology
 

Surface mount components, including resistors, transistors and an integrated circuit

Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s and became widely used by the mid 1990s. Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly on to the PCB surface. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labour costs and greatly increasing production and quality rates. Carrier Tapes provide a stable and protective environment for Surface mount devices (SMDs) which can be one-quarter to one-tenth of the size and weight, and passive components can be one-half to one-quarter of the cost of corresponding through-hole parts. However, integrated circuits are often priced the same regardless of the package type, because the chip itself is the most expensive part. As of 2006, some wire-ended components, such as small-signal switch diodes, e.g. 1N4148, are actually significantly cheaper than corresponding SMD versions.

See also

Nuvola apps ksim.png Electronics portal
 

Schematic Capture. (KiCAD)

 

PCB layout. (KiCAD)

 

3D View. (KiCAD)

  • Breadboard
  • C.I.D.+
  • Design for manufacturability (PCB)
  • Electronic packaging
  • Electronic waste
  • Multi-Chip Module
  • Occam Process – another process for the manufacturing of PCBs
PCB Materials
  • Conductive ink
  • Heavy copper
  • Laminate materials:
    • BT-Epoxy
    • Composite epoxy material, CEM-1,5
    • Cyanate Ester
    • FR-2
    • FR-4, the most common PCB material
    • Polyimide
    • PTFE, Polytetrafluoroethylene (Teflon)
PCB layout software
  • List of EDA companies
  • Comparison of EDA software

http://creativecommons.org/licenses/by-sa/3.0/

Category : AC, DC, VFD, Servo Drives | Analog Circuit Board Repair | Electronic repair service | Electronic Repair Services | Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Blog
5
Jun

Service

Industrial Repair Group delivers fast and reliable PLC Repair, PLC Rebuild, & PLC Remanufacturing Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your PLC Repair, PLC Rebuild, & PLC Remanufacturing. We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a PLC Repair, PLC Rebuild, & PLC Remanufacturing Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all PLC Repair, PLC Rebuild, & PLC Remanufacturing
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Get a PLC Repair, PLC Rebuild, & PLC Remanufacturing Quote Shipping Information
2

Get the PLC Repair, PLC Rebuild, & PLC Remanufacturing Service Advantage

  • Every PLC Repair, PLC Rebuild, & PLC Remanufacturing comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every PLC Repair, PLC Rebuild, & PLC Remanufacturing

Every PLC Repair, PLC Rebuild, & PLC Remanufacturing is subjected to dynamic function testings to verify a successful repair and then backed by an Industrial Repair Group 18 Month Repair Warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each PLC Repair, PLC Rebuild, & PLC Remanufacturing to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Get a Repair Quote

Get a Fast Quote for your PLC Repair & PLC Rebuild now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How Programmable Logic Works

Thank you for choosing Industrial Repair Group. If you would like a printable version of How Programmable Logic Controllers (PLC) Operate, please follow this link: IRG-Programmable-Logic-Controller

[/REMIX]

Siemens Simatic S7-400 system at rack, left-to-right: power supply unit PS407 4A,CPU 416-3, interface module IM 460-0 and communication processor CP 443-1.

A programmable logic controller (PLC) or programmable controller is a digital computer used for automation of electromechanical processes, such as control of machinery on factory assembly lines, amusement rides, or lighting fixtures. PLCs are used in many industries and machines. Unlike general-purpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. Programs to control machine operation are typically stored in battery-backed or non-volatile memory. A PLC is an example of a hard real time system since output results must be produced in response to input conditions within a bounded time, otherwise unintended operation will result.

History

The PLC was invented in response to the needs of the American automotive manufacturing industry. Programmable logic controllers were initially adopted by the automotive industry where software revision replaced the re-wiring of hard-wired control panels when production models changed.

Before the PLC, control, sequencing, and safety interlock logic for manufacturing automobiles was accomplished using hundreds or thousands of relays, cam timers, and drum sequencers and dedicated closed-loop controllers. The process for updating such facilities for the yearly model change-over was very time consuming and expensive, as electricians needed to individually rewire each and every relay.

In 1968 GM Hydramatic (the automatic transmission division of General Motors) issued a request for proposal for an electronic replacement for hard-wired relay systems. The winning proposal came from Bedford Associates of Bedford, Massachusetts. The first PLC, designated the 084 because it was Bedford Associates’ eighty-fourth project, was the result. Bedford Associates started a new company dedicated to developing, manufacturing, selling, and servicing this new product: Modicon, which stood for MOdular DIgital CONtroller. One of the people who worked on that project was Dick Morley, who is considered to be the “father” of the PLC. The Modicon brand was sold in 1977 to Gould Electronics, and later acquired by German Company AEG and then by French Schneider Electric, the current owner.

One of the very first 084 models built is now on display at Modicon’s headquarters in North Andover, Massachusetts. It was presented to Modicon by GM, when the unit was retired after nearly twenty years of uninterrupted service. Modicon used the 84 moniker at the end of its product range until the 984 made its appearance.

The automotive industry is still one of the largest users of PLCs.

Development

Early PLCs were designed to replace relay logic systems. These PLCs were programmed in “ladder logic”, which strongly resembles a schematic diagram of relay logic. This program notation was chosen to reduce training demands for the existing technicians. Other early PLCs used a form of instruction list programming, based on a stack-based logic solver.

Modern PLCs can be programmed in a variety of ways, from ladder logic to more traditional programming languages such as BASIC and C. Another method is State Logic, a very high-level programming language designed to program PLCs based on state transition diagrams.

Many early PLCs did not have accompanying programming terminals that were capable of graphical representation of the logic, and so the logic was instead represented as a series of logic expressions in some version of Boolean format, similar to Boolean algebra. As programming terminals evolved, it became more common for ladder logic to be used, for the aforementioned reasons. Newer formats such as State Logic and Function Block (which is similar to the way logic is depicted when using digital integrated logic circuits) exist, but they are still not as popular as ladder logic. A primary reason for this is that PLCs solve the logic in a predictable and repeating sequence, and ladder logic allows the programmer (the person writing the logic) to see any issues with the timing of the logic sequence more easily than would be possible in other formats.

Programming

Early PLCs, up to the mid-1980s, were programmed using proprietary programming panels or special-purpose programming terminals, which often had dedicated function keys representing the various logical elements of PLC programs. Programs were stored on cassette tape cartridges. Facilities for printing and documentation were very minimal due to lack of memory capacity. The very oldest PLCs used non-volatile magnetic core memory.

More recently, PLCs are programmed using application software on personal computers. The computer is connected to the PLC through Ethernet, RS-232, RS-485 or RS-422 cabling. The programming software allows entry and editing of the ladder-style logic. Generally the software provides functions for debugging and troubleshooting the PLC software, for example, by highlighting portions of the logic to show current status during operation or via simulation. The software will upload and download the PLC program, for backup and restoration purposes. In some models of programmable controller, the program is transferred from a personal computer to the PLC though a programming board which writes the program into a removable chip such as an EEPROM or EPROM.

Functionality

The functionality of the PLC has evolved over the years to include sequential relay control, motion control, process control, distributed control systems and networking. The data handling, storage, processing power and communication capabilities of some modern PLCs are approximately equivalent to desktop computers. PLC-like programming combined with remote I/O hardware, allow a general-purpose desktop computer to overlap some PLCs in certain applications. Regarding the practicality of these desktop computer based logic controllers, it is important to note that they have not been generally accepted in heavy industry because the desktop computers run on less stable operating systems than do PLCs, and because the desktop computer hardware is typically not designed to the same levels of tolerance to temperature, humidity, vibration, and longevity as the processors used in PLCs. In addition to the hardware limitations of desktop based logic, operating systems such as Windows do not lend themselves to deterministic logic execution, with the result that the logic may not always respond to changes in logic state or input status with the extreme consistency in timing as is expected from PLCs. Still, such desktop logic applications find use in less critical situations, such as laboratory automation and use in small facilities where the application is less demanding and critical, because they are generally much less expensive than PLCs.

In more recent years, small products called PLRs (programmable logic relays), and also by similar names, have become more common and accepted. These are very much like PLCs, and are used in light industry where only a few points of I/O (i.e. a few signals coming in from the real world and a few going out) are involved, and low cost is desired. These small devices are typically made in a common physical size and shape by several manufacturers, and branded by the makers of larger PLCs to fill out their low end product range. Popular names include PICO Controller, NANO PLC, and other names implying very small controllers. Most of these have between 8 and 12 digital inputs, 4 and 8 digital outputs, and up to 2 analog inputs. Size is usually about 4″ wide, 3″ high, and 3″ deep. Most such devices include a tiny postage stamp sized LCD screen for viewing simplified ladder logic (only a very small portion of the program being visible at a given time) and status of I/O points, and typically these screens are accompanied by a 4-way rocker push-button plus four more separate push-buttons, similar to the key buttons on a VCR remote control, and used to navigate and edit the logic. Most have a small plug for connecting via RS-232 or RS-485 to a personal computer so that programmers can use simple Windows applications for programming instead of being forced to use the tiny LCD and push-button set for this purpose. Unlike regular PLCs that are usually modular and greatly expandable, the PLRs are usually not modular or expandable, but their price can be two orders of magnitude less than a PLC and they still offer robust design and deterministic execution of the logic.

PLC Topics

Features

Control panel with PLC (grey elements in the center). The unit consists of separate elements, from left to right; power supply, controller, relay units for in- and output

The main difference from other computers is that PLCs are armored for severe conditions (such as dust, moisture, heat, cold) and have the facility for extensive input/output (I/O) arrangements. These connect the PLC to sensors and actuators. PLCs read limit switches, analog process variables (such as temperature and pressure), and the positions of complex positioning systems. Some use machine vision. On the actuator side, PLCs operate electric motors, pneumatic or hydraulic cylinders, magnetic relays, solenoids, or analog outputs. The input/output arrangements may be built into a simple PLC, or the PLC may have external I/O modules attached to a computer network that plugs into the PLC.

System scale

A small PLC will have a fixed number of connections built in for inputs and outputs. Typically, expansions are available if the base model has insufficient I/O.

Modular PLCs have a chassis (also called a rack) into which are placed modules with different functions. The processor and selection of I/O modules is customised for the particular application. Several racks can be administered by a single processor, and may have thousands of inputs and outputs. A special high speed serial I/O link is used so that racks can be distributed away from the processor, reducing the wiring costs for large plants.

User interface

See also: User interface and List of human-computer interaction topics

PLCs may need to interact with people for the purpose of configuration, alarm reporting or everyday control.

A Human-Machine Interface (HMI) is employed for this purpose. HMIs are also referred to as MMIs (Man Machine Interface) and GUIs (Graphical User Interface).

A simple system may use buttons and lights to interact with the user. Text displays are available as well as graphical touch screens. More complex systems use programming and monitoring software installed on a computer, with the PLC connected via a communication interface.

Communications

PLCs have built in communications ports, usually 9-pin RS-232, but optionally EIA-485 or Ethernet. Modbus, BACnet or DF1 is usually included as one of the communications protocols. Other options include various fieldbuses such as DeviceNet or Profibus. Other communications protocols that may be used are listed in the List of automation protocols.

Most modern PLCs can communicate over a network to some other system, such as a computer running a SCADA (Supervisory Control And Data Acquisition) system or web browser.

PLCs used in larger I/O systems may have peer-to-peer (P2P) communication between processors. This allows separate parts of a complex process to have individual control while allowing the subsystems to co-ordinate over the communication link. These communication links are also often used for HMI devices such as keypads or PC-type workstations.

Programming

PLC programs are typically written in a special application on a personal computer, then downloaded by a direct-connection cable or over a network to the PLC. The program is stored in the PLC either in battery-backed-up RAM or some other non-volatile flash memory. Often, a single PLC can be programmed to replace thousands of relays.

Under the IEC 61131-3 standard, PLCs can be programmed using standards-based programming languages. A graphical programming notation called Sequential Function Charts is available on certain programmable controllers. Initially most PLCs utilized Ladder Logic Diagram Programming, a model which emulated electromechanical control panel devices (such as the contact and coils of relays) which PLCs replaced. This model remains common today.

IEC 61131-3 currently defines five programming languages for programmable control systems: FBD (Function block diagram), LD (Ladder diagram), ST (Structured text, similar to the Pascal programming language), IL (Instruction list, similar to assembly language) and SFC (Sequential function chart). These techniques emphasize logical organization of operations.

While the fundamental concepts of PLC programming are common to all manufacturers, differences in I/O addressing, memory organization and instruction sets mean that PLC programs are never perfectly interchangeable between different makers. Even within the same product line of a single manufacturer, different models may not be directly compatible.

PLC compared with other control systems

Allen-Bradley PLC installed in a control panel

PLCs are well-adapted to a range of automation tasks. These are typically industrial processes in manufacturing where the cost of developing and maintaining the automation system is high relative to the total cost of the automation, and where changes to the system would be expected during its operational life. PLCs contain input and output devices compatible with industrial pilot devices and controls; little electrical design is required, and the design problem centers on expressing the desired sequence of operations. PLC applications are typically highly customized systems so the cost of a packaged PLC is low compared to the cost of a specific custom-built controller design. On the other hand, in the case of mass-produced goods, customized control systems are economic due to the lower cost of the components, which can be optimally chosen instead of a “generic” solution, and where the non-recurring engineering charges are spread over thousands or millions of units.

For high volume or very simple fixed automation tasks, different techniques are used. For example, a consumer dishwasher would be controlled by an electromechanical cam timer costing only a few dollars in production quantities.

A microcontroller-based design would be appropriate where hundreds or thousands of units will be produced and so the development cost (design of power supplies, input/output hardware and necessary testing and certification) can be spread over many sales, and where the end-user would not need to alter the control. Automotive applications are an example; millions of units are built each year, and very few end-users alter the programming of these controllers. However, some specialty vehicles such as transit busses economically use PLCs instead of custom-designed controls, because the volumes are low and the development cost would be uneconomic.

Very complex process control, such as used in the chemical industry, may require algorithms and performance beyond the capability of even high-performance PLCs. Very high-speed or precision controls may also require customized solutions; for example, aircraft flight controls.

Programmable controllers are widely used in motion control, positioning control and torque control. Some manufacturers produce motion control units to be integrated with PLC so that G-code (involving a CNC machine) can be used to instruct machine movements.[citation needed]

PLCs may include logic for single-variable feedback analog control loop, a “proportional, integral, derivative” or “PID controller”. A PID loop could be used to control the temperature of a manufacturing process, for example. Historically PLCs were usually configured with only a few analog control loops; where processes required hundreds or thousands of loops, a distributed control system (DCS) would instead be used. As PLCs have become more powerful, the boundary between DCS and PLC applications has become less distinct.

PLCs have similar functionality as Remote Terminal Units. An RTU, however, usually does not support control algorithms or control loops. As hardware rapidly becomes more powerful and cheaper, RTUs, PLCs and DCSs are increasingly beginning to overlap in responsibilities, and many vendors sell RTUs with PLC-like features and vice versa. The industry has standardized on the IEC 61131-3 functional block language for creating programs to run on RTUs and PLCs, although nearly all vendors also offer proprietary alternatives and associated development environments.

Digital and analog signals

Digital or discrete signals behave as binary switches, yielding simply an On or Off signal (1 or 0, True or False, respectively). Push buttons, limit switches, and photoelectric sensors are examples of devices providing a discrete signal. Discrete signals are sent using either voltage or current, where a specific range is designated as On and another as Off. For example, a PLC might use 24 V DC I/O, with values above 22 V DC representing On, values below 2VDC representing Off, and intermediate values undefined. Initially, PLCs had only discrete I/O.

Analog signals are like volume controls, with a range of values between zero and full-scale. These are typically interpreted as integer values (counts) by the PLC, with various ranges of accuracy depending on the device and the number of bits available to store the data. As PLCs typically use 16-bit signed binary processors, the integer values are limited between -32,768 and +32,767. Pressure, temperature, flow, and weight are often represented by analog signals. Analog signals can use voltage or current with a magnitude proportional to the value of the process signal. For example, an analog 0 – 10 V input or 4-20 mA would be converted into an integer value of 0 – 32767.

Current inputs are less sensitive to electrical noise (i.e. from welders or electric motor starts) than voltage inputs.

Example

As an example, say a facility needs to store water in a tank. The water is drawn from the tank by another system, as needed, and our example system must manage the water level in the tank.

Using only digital signals, the PLC has two digital inputs from float switches (Low Level and High Level). When the water level is above the switch it closes a contact and passes a signal to an input. The PLC uses a digital output to open and close the inlet valve into the tank.

When the water level drops enough so that the Low Level float switch is off (down), the PLC will open the valve to let more water in. Once the water level rises enough so that the High Level switch is on (up), the PLC will shut the inlet to stop the water from overflowing. This rung is an example of seal-in (latching) logic. The output is sealed in until some condition breaks the circuit.

|                                                             |  |   Low Level      High Level                 Fill Valve      |  |------[/]------|------[/]----------------------(OUT)---------|  |               |                                             |  |               |                                             |  |               |                                             |  |   Fill Valve  |                                             |  |------[ ]------|                                             |  |                                                             |  |                                                             |

An analog system might use a water pressure sensor or a load cell, and an adjustable (throttling) dripping out of the tank, the valve adjusts to slowly drip water back into the tank.

In this system, to avoid ‘flutter’ adjustments that can wear out the valve, many PLCs incorporate “hysteresis” which essentially creates a “deadband” of activity. A technician adjusts this deadband so the valve moves only for a significant change in rate. This will in turn minimize the motion of the valve, and reduce its wear.

A real system might combine both approaches, using float switches and simple valves to prevent spills, and a rate sensor and rate valve to optimize refill rates and prevent water hammer. Backup and maintenance methods can make a real system very complicated.

See also

  • The Westinghouse sign
  • Distributed control system, (DCS).
  • Industrial control systems, (ICS).
  • Industrial safety systems
  • Programmable automation controller, (PAC).
  • Signature image processing, (SIP)
  • SCADA

http://creativecommons.org/licenses/by-sa/3.0/

Category : Electronic Repair Services | Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Programmable Logic Controller - PLC Repair | Blog
3
Jun

Service

Industrial Repair Group delivers fast and reliable Circuit Board Repair & Circuit Board Remanufacturing Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your Circuit Board Repair & Circuit Board Remanufacturing. We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a Circuit Board Repair & Circuit Board Remanufacturing Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all Circuit Board Repair & Circuit Board Remanufacturing
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Get a Circuit Board Repair & Circuit Board Remanufacturing Quote

Shipping Information
2

Get the Circuit Board Repair & Circuit Board Remanufacturing Service Advantage

  • Every Circuit Board Repair & Circuit Board Remanufacturing comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every Circuit Board Repair & Circuit Board Remanufacturing

Every Circuit Board Repair & Circuit Board Remanufacturing is subjected to dynamic function testings to verify a successful repair and then backed by an Industrial Repair Group 18 Month Repair Warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each Circuit Board Repair & Circuit Board Remanufacturing to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Get a Repair Quote

Get a Fast Quote for your [php] the_title(); [/php] now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How Circuit Boards Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How Circuit Boards Operate, please follow this link: IRG-Circuit-Boards

[/REMIX]






Part of a 1983 Sinclair ZX Spectrum computer board; a populated PCB, showing the conductive traces, vias (the through-hole paths to the other surface), and some mounted electrical components


A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA). Printed circuit boards are used in virtually all but the simplest commercially-produced electronic devices.

PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire wrap or point-to-point construction, but are much cheaper and faster for high-volume production; the production and soldering of PCBs can be done by totally automated equipment. Much of the electronics industry’s PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.

History

The inventor of the printed circuit was the Austrian engineer Paul Eisler who, while working in England, made one circa 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make rugged radios for use in World War II. After the war, in 1948, the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.

Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove’s 1936-1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.

During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.[1]

Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components’ leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful since drilling holes is expensive and the protruding wires are merely cut off.

In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown.

Manufacturing


Materials






A PCB as a design on a computer (left) and realized as a board assembly populated with components (right). The board is double sided, with through-hole plating, green solder resist, and white silkscreen printing. Both surface mount and through-hole components have been used.







A PCB in a computer mouse. The Component Side (left) and the printed side (right).







The Component Side of a PCB in a computer mouse; some examples for common components and their reference designations on the silk screen.


Conducting layers are typically made of thin copper foil. Insulating layers dielectric are typically laminated together with epoxy resin prepreg. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue, black, white and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability.

FR-4 is by far the most common material used today. The board with copper on it is called “copper-clad laminate”.

Copper foil thickness can be specified in ounces per square foot or micrometres. One ounce per square foot is 1.344 mils or 34 micrometres.

Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper over the entire substrate, sometimes on both sides, (creating a “blank PCB”) then removing unwanted copper after applying a temporary mask (e.g. by etching), leaving only the desired copper traces. A few PCBs are made by adding traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. The PCB manufacturing method primarily depends on whether it is for production volume or sample/prototype quantities.

Commercial (production quantities, usually PTH)



  • silk screen printing -the main commercial method.

  • Photographic methods. Used when fine linewidths are required.


Hobbyist/prototype (small quantities, usually not PTH)



  • Laser-printed resist: Laser-print onto paper (or wax paper), heat-transfer with an iron or modified laminator onto bare laminate, then etch.

  • Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e. pre-sensitized boards), Then etch. (Alternatively, use a film photoplotter).

  • Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.)

  • Use a CNC-mill with a spade-shaped (i.e. 45-degree) cutter or miniature end-mill to route away the undesired copper, leaving only the traces.

There are three common “subtractive” methods (methods that remove copper) used for the production of printed circuit boards:


  1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.

  2. Photoengraving uses a photomask and developer to selectively remove a photoresist coating. The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements.

  3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a ‘PCB Prototyper’) operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.

“Additive” processes also exist. The most common is the “semi-additive” process. In this version, the unpatterned board has a thin layer of copper already on it. A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed original copper laminate from the board, isolating the individual traces. Some boards with plated through holes but still single sided were made with a process like this. General Electric made consumer radio sets in the late 1960s using boards like these.

The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes (to produce conductive vias) in the circuit board.







  • PCB copper electroplating machine for adding copper to the in-process PCB









  • PCB’s in process of adding copper via electroplating




The dimensions of the copper conductors of the printed circuit board is related to the amount of current the conductor must carry. Each trace consists of a flat, narrow part of the copper foil that remains after etching. Signal traces are usually narrower than power or ground traces because their current carrying requirements are usually much less. In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For printed circuit boards that contain microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully-controlled dimensions to assure a consistent impedance. In radio-frequency circuits the inductance and capacitance of the printed circuit board conductors can be used as a delibrate part of the circuit design, obviating the need for additional discrete components.

Etching

Chemical etching is done with ferric chloride, ammonium persulfate, or sometimes hydrochloric acid. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin/lead. The tin/lead becomes the resist leaving the bare copper to be etched away.

Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer PCBs. These are formed by bonding together separately etched thin boards.

Drilling

Holes through a PCB are typically drilled with tiny drill bits made of solid tungsten carbide. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or “Excellon files”. The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.

Most common laminate is epoxy filled fiberglass. Drill bit wear is partly due to embedded glass, which is harder than steel. High drill speed necessary for cost effective drilling of hundreds of holes per board causes very high temperatures at the drill bit tip, and high temperatures (400-700 degrees) soften steel and decompose (oxidize) laminate filler. Copper is softer than epoxy and interior conductors may suffer damage during drilling.

When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.

The walls of the holes, for boards with 2 or more layers, are made conductive then plated with copper to form plated-through holes that electrically connect the conducting layers of the PCB. For multilayer boards, those with 4 layers or more, drilling typically produces a smear of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this smear must be removed by a chemical de-smear process, or by plasma-etch. Removing (etching back) the smear also reveals the interior conductors as well.

Exposed conductor plating and coating

PCBs[2] are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.[3]

After PCBs are etched and then rinsed with water, the soldermask is applied, and then any exposed copper is coated with solder, nickel/gold, or some other anti-corrosion coating.[4][5]

Matte solder is usually fused to provide a better bonding surface or stripped to bare copper. Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface.[6] This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead. One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium.

It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste.

Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold plating (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating and/or leaving voids.

Electrochemical migration (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias.[7][8] Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow “whiskers” due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence. Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.[9]

Solder resist

Areas that should not be soldered may be covered with a polymer solder resist (solder mask) coating. The solder resist prevents solder from bridging between conductors and creating short circuits. Solder resist also provides some protection from the environment. Solder resist is typically 20-30 micrometres thick.

Screen printing

Line art and text may be printed onto the outer surfaces of a PCB by screen printing. When space permits, the screen print text can indicate component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board.

Screen print is also known as the silk screen, or, in one sided PCBs, the red print.

Lately some digital printing solutions have been developed to substitute the traditional screen printing process. This technology allows printing variable data onto the PCB, including serialization and barcode information for traceability purposes.

Test

Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a Bed of nails tester, a fixture or a Rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A “short” on a board would be a connection where there should not be one; an “open” is between two points that should be connected but are not. For small- or medium-volume boards, flying probe and flying-grid testers use moving test heads to make contact with the copper/silver/gold/solder lands or holes to verify the electrical connectivity of the board under test.

Printed circuit assembly

After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly,[10][11] or PCA (sometimes called a “printed circuit board assembly” PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount construction, the components are placed on pads or lands on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder.

There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with machine placement and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.)[12] by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts are impossible to solder by hand, such as ball grid array (BGA) packages.

Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques.

After the board has been populated it may be tested in a variety of ways:


  • While the power is off, visual inspection, automated optical inspection. JEDEC guidelines for PCB component placement, soldering, and inspection are commonly used to maintain quality control in this stage of PCB manufacturing.



  • While the power is off, analog signature analysis, power-off testing.



  • While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done.



  • While the power is on, functional test, just checking if the PCB does what it had been designed for.

To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors. The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board.

In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard. The JTAG test architecture provides a means to test interconnects between integrated circuits on a board without using physical test probes. JTAG tool vendors provide various types of stimulus and sophisticated algorithms, not only to detect the failing nets, but also to isolate the faults to specific nets, devices, and pins.[13]

When boards fail the test, technicians may desolder and replace failed components, a task known as rework.

Protection and packaging

PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult.[14]

Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it’s quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs.

Design



  • Schematic capture or schematic entry is done through an EDA tool.

  • Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required.

  • Deciding stack layers of the PCB. 4 to 12 layers or more depending on design complexity. Ground plane and Power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers.[15]

  • Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width. Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals.

  • Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked.

  • Routing the signal trace. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power plane behaves as ground for AC.

  • Gerber file generation for manufacturing.


Safety certification (US)

Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts.

“Cordwood” construction






A cordwood module.


Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers, where short traces were important. In “cordwood” construction, axial-leaded components were mounted between two parallel planes. The components were either soldered together with jumper wire, or they were connected to other components by thin nickel ribbon welded at right angles onto the component leads. To avoid shorting together different interconnection layers, thin insulating cards were placed between them. Perforations or holes in the cards allowed component leads to project through to the next interconnection layer. One disadvantage of this system was that special nickel leaded components had to be used to allow the interconnecting welds to be made. Some versions of cordwood construction used single sided PCBs as the interconnection method (as pictured). This meant that normal leaded components could be used. Another disadvantage of this system is that components located in the interior are difficult to replace.

Before the advent of integrated circuits, this method allowed the highest possible component packing density; because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction now appears to have fallen into disuse, probably because high packing densities can be more easily achieved using surface mount techniques and integrated circuits.

Multiwire boards

Multiwire is a patented technique of interconnection which uses machine-routed insulated wires embedded in a non-conducting matrix (often plastic resin). It was used during the 1980s and 1990s. (Kollmorgen Technologies Corp., U.S. Patent 4,175,816) Multiwire is still available in 2010 through Hitachi. There are other competitive discrete wiring technologies that have been developed (Jumatech [2]).

Since it was quite easy to stack interconnections (wires) inside the embedding matrix, the approach allowed designers to forget completely about the routing of wires (usually a time-consuming operation of PCB design): Anywhere the designer needs a connection, the machine will draw a wire in straight line from one location/pin to another. This led to very short design times (no complex algorithms to use even for high density designs) as well as reduced crosstalk (which is worse when wires run parallel to each other—which almost never happens in Multiwire), though the cost is too high to compete with cheaper PCB technologies when large quantities are needed.

Surface-mount technology


Main article: Surface-mount technology





Surface mount components, including resistors, transistors and an integrated circuit


Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s and became widely used by the mid 1990s. Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly on to the PCB surface. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labour costs and greatly increasing production and quality rates. Carrier Tapes provide a stable and protective environment for Surface mount devices (SMDs) which can be one-quarter to one-tenth of the size and weight, and passive components can be one-half to one-quarter of the cost of corresponding through-hole parts. However, integrated circuits are often priced the same regardless of the package type, because the chip itself is the most expensive part. As of 2006, some wire-ended components, such as small-signal switch diodes, e.g. 1N4148, are actually significantly cheaper than corresponding SMD versions.

See also










Nuvola apps ksim.png Electronics portal






Schematic Capture. (KiCAD)







PCB layout. (KiCAD)







3D View. (KiCAD)




  • Breadboard

  • C.I.D.+

  • Design for manufacturability (PCB)

  • Electronic packaging

  • Electronic waste

  • Multi-Chip Module

  • Occam Process – another process for the manufacturing of PCBs



PCB Materials




  • Conductive ink

  • Heavy copper

  • Laminate materials:

    • BT-Epoxy

    • Composite epoxy material, CEM-1,5

    • Cyanate Ester

    • FR-2

    • FR-4, the most common PCB material

    • Polyimide

    • PTFE, Polytetrafluoroethylene (Teflon)






PCB layout software



  • List of EDA companies

  • Comparison of EDA software



http://creativecommons.org/licenses/by-sa/3.0/

Category : Electronic Repair Services | Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Blog
14
May

Circuit Board Repair Service by Industrial Repair Group

Industrial Repair Group delivers fast and reliable Circuit Board Repair Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your Circuit Board Repair. We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a Circuit Board Repair Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all Circuit Board Repair
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Circuit Board Repair Quote Shipping Information
2

Get the Circuit Board Repair Service Advantage

  • Every Circuit Board Repair comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every Circuit Board Repair

Every Circuit Board Repair is subjected to dynamic function testings to verify a successful repair and then backed by an IRG 18 month repair warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each Circuit Board Repair to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

Category : AC, DC, VFD, Servo Drives | Analog Circuit Board Repair | Electronic Repair Services | Industrial Controls Repair | Blog
6
May

Service

Industrial Repair Group performs extensive component level repairs, touching up solder traces, replacing bad components, as well as full testing of ICs, PALs, EPROMs, GALs, surface mounted components and much more. Every Femco Repair Service by Industrial Repair Group is subjected to dynamic function tests to verify successful repair and then backed by our 18 month repair guarantee. Sealers and conformal coatings are re-applied as needed with each repair restoring your equipment back to its original OEM specs.

Industrial Repair Group is more than a service provider for your industry. We are a partner and a dedicated resource for your team members to rely upon. Feel confident that we don't play the lingo game. We are real people, with real goals. Our company is always open minded and intent on isolating problems to keep organizations up and running 24/7. We are a leading service provider that believes educated personal is the best policy.

INDUSTRIAL REPAIR GROUP FAST QUOTE

Get a Repair Quote

Get a Fast Quote for your Femco Repair Service by Industrial Repair Group now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How Circuit Boards Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How Circuit Boards Operate, please follow this link: IRG-Circuit-Boards

 

Part of a 1983 Sinclair ZX Spectrum computer board; a populated PCB, showing the conductive traces, vias (the through-hole paths to the other surface), and some mounted electrical components

A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA). Printed circuit boards are used in virtually all but the simplest commercially-produced electronic devices.

PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire wrap or point-to-point construction, but are much cheaper and faster for high-volume production; the production and soldering of PCBs can be done by totally automated equipment. Much of the electronics industry’s PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.

History

The inventor of the printed circuit was the Austrian engineer Paul Eisler who, while working in England, made one circa 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make rugged radios for use in World War II. After the war, in 1948, the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.

Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove’s 1936-1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.

During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.[1]

Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components’ leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful since drilling holes is expensive and the protruding wires are merely cut off.

In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown.

Manufacturing

Materials

 

A PCB as a design on a computer (left) and realized as a board assembly populated with components (right). The board is double sided, with through-hole plating, green solder resist, and white silkscreen printing. Both surface mount and through-hole components have been used.

 

A PCB in a computer mouse. The Component Side (left) and the printed side (right).

 

The Component Side of a PCB in a computer mouse; some examples for common components and their reference designations on the silk screen.

Conducting layers are typically made of thin copper foil. Insulating layers dielectric are typically laminated together with epoxy resin prepreg. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue, black, white and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability.

FR-4 is by far the most common material used today. The board with copper on it is called “copper-clad laminate”.

Copper foil thickness can be specified in ounces per square foot or micrometres. One ounce per square foot is 1.344 mils or 34 micrometres.

Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper over the entire substrate, sometimes on both sides, (creating a “blank PCB”) then removing unwanted copper after applying a temporary mask (e.g. by etching), leaving only the desired copper traces. A few PCBs are made by adding traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. The PCB manufacturing method primarily depends on whether it is for production volume or sample/prototype quantities.

Commercial (production quantities, usually PTH)

  • silk screen printing -the main commercial method.
  • Photographic methods. Used when fine linewidths are required.

Hobbyist/prototype (small quantities, usually not PTH)

  • Laser-printed resist: Laser-print onto paper (or wax paper), heat-transfer with an iron or modified laminator onto bare laminate, then etch.
  • Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e. pre-sensitized boards), Then etch. (Alternatively, use a film photoplotter).
  • Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.)
  • Use a CNC-mill with a spade-shaped (i.e. 45-degree) cutter or miniature end-mill to route away the undesired copper, leaving only the traces.

There are three common “subtractive” methods (methods that remove copper) used for the production of printed circuit boards:

  1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.
  2. Photoengraving uses a photomask and developer to selectively remove a photoresist coating. The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements.
  3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a ‘PCB Prototyper’) operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.

“Additive” processes also exist. The most common is the “semi-additive” process. In this version, the unpatterned board has a thin layer of copper already on it. A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed original copper laminate from the board, isolating the individual traces. Some boards with plated through holes but still single sided were made with a process like this. General Electric made consumer radio sets in the late 1960s using boards like these.

The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes (to produce conductive vias) in the circuit board.

  • PCB copper electroplating machine for adding copper to the in-process PCB

  • PCB’s in process of adding copper via electroplating

The dimensions of the copper conductors of the printed circuit board is related to the amount of current the conductor must carry. Each trace consists of a flat, narrow part of the copper foil that remains after etching. Signal traces are usually narrower than power or ground traces because their current carrying requirements are usually much less. In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For printed circuit boards that contain microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully-controlled dimensions to assure a consistent impedance. In radio-frequency circuits the inductance and capacitance of the printed circuit board conductors can be used as a delibrate part of the circuit design, obviating the need for additional discrete components.

Etching

Chemical etching is done with ferric chloride, ammonium persulfate, or sometimes hydrochloric acid. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin/lead. The tin/lead becomes the resist leaving the bare copper to be etched away.

Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer PCBs. These are formed by bonding together separately etched thin boards.

Drilling

Holes through a PCB are typically drilled with tiny drill bits made of solid tungsten carbide. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or “Excellon files”. The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.

Most common laminate is epoxy filled fiberglass. Drill bit wear is partly due to embedded glass, which is harder than steel. High drill speed necessary for cost effective drilling of hundreds of holes per board causes very high temperatures at the drill bit tip, and high temperatures (400-700 degrees) soften steel and decompose (oxidize) laminate filler. Copper is softer than epoxy and interior conductors may suffer damage during drilling.

When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.

The walls of the holes, for boards with 2 or more layers, are made conductive then plated with copper to form plated-through holes that electrically connect the conducting layers of the PCB. For multilayer boards, those with 4 layers or more, drilling typically produces a smear of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this smear must be removed by a chemical de-smear process, or by plasma-etch. Removing (etching back) the smear also reveals the interior conductors as well.

Exposed conductor plating and coating

PCBs[2] are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.[3]

After PCBs are etched and then rinsed with water, the soldermask is applied, and then any exposed copper is coated with solder, nickel/gold, or some other anti-corrosion coating.[4][5]

Matte solder is usually fused to provide a better bonding surface or stripped to bare copper. Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface.[6] This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead. One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium.

It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste.

Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold plating (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating and/or leaving voids.

Electrochemical migration (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias.[7][8] Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow “whiskers” due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence. Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.[9]

Solder resist

Areas that should not be soldered may be covered with a polymer solder resist (solder mask) coating. The solder resist prevents solder from bridging between conductors and creating short circuits. Solder resist also provides some protection from the environment. Solder resist is typically 20-30 micrometres thick.

Screen printing

Line art and text may be printed onto the outer surfaces of a PCB by screen printing. When space permits, the screen print text can indicate component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board.

Screen print is also known as the silk screen, or, in one sided PCBs, the red print.

Lately some digital printing solutions have been developed to substitute the traditional screen printing process. This technology allows printing variable data onto the PCB, including serialization and barcode information for traceability purposes.

Test

Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a Bed of nails tester, a fixture or a Rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A “short” on a board would be a connection where there should not be one; an “open” is between two points that should be connected but are not. For small- or medium-volume boards, flying probe and flying-grid testers use moving test heads to make contact with the copper/silver/gold/solder lands or holes to verify the electrical connectivity of the board under test.

Printed circuit assembly

After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly,[10][11] or PCA (sometimes called a “printed circuit board assembly” PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount construction, the components are placed on pads or lands on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder.

There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with machine placement and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.)[12] by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts are impossible to solder by hand, such as ball grid array (BGA) packages.

Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques.

After the board has been populated it may be tested in a variety of ways:

  • While the power is off, visual inspection, automated optical inspection. JEDEC guidelines for PCB component placement, soldering, and inspection are commonly used to maintain quality control in this stage of PCB manufacturing.
  • While the power is off, analog signature analysis, power-off testing.
  • While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done.
  • While the power is on, functional test, just checking if the PCB does what it had been designed for.

To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors. The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board.

In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard. The JTAG test architecture provides a means to test interconnects between integrated circuits on a board without using physical test probes. JTAG tool vendors provide various types of stimulus and sophisticated algorithms, not only to detect the failing nets, but also to isolate the faults to specific nets, devices, and pins.[13]

When boards fail the test, technicians may desolder and replace failed components, a task known as rework.

Protection and packaging

PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult.[14]

Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it’s quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs.

Design

  • Schematic capture or schematic entry is done through an EDA tool.
  • Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required.
  • Deciding stack layers of the PCB. 4 to 12 layers or more depending on design complexity. Ground plane and Power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers.[15]
  • Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width. Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals.
  • Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked.
  • Routing the signal trace. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power plane behaves as ground for AC.
  • Gerber file generation for manufacturing.

Safety certification (US)

Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts.

“Cordwood” construction

 

A cordwood module.

Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers, where short traces were important. In “cordwood” construction, axial-leaded components were mounted between two parallel planes. The components were either soldered together with jumper wire, or they were connected to other components by thin nickel ribbon welded at right angles onto the component leads. To avoid shorting together different interconnection layers, thin insulating cards were placed between them. Perforations or holes in the cards allowed component leads to project through to the next interconnection layer. One disadvantage of this system was that special nickel leaded components had to be used to allow the interconnecting welds to be made. Some versions of cordwood construction used single sided PCBs as the interconnection method (as pictured). This meant that normal leaded components could be used. Another disadvantage of this system is that components located in the interior are difficult to replace.

Before the advent of integrated circuits, this method allowed the highest possible component packing density; because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction now appears to have fallen into disuse, probably because high packing densities can be more easily achieved using surface mount techniques and integrated circuits.

Multiwire boards

Multiwire is a patented technique of interconnection which uses machine-routed insulated wires embedded in a non-conducting matrix (often plastic resin). It was used during the 1980s and 1990s. (Kollmorgen Technologies Corp., U.S. Patent 4,175,816) Multiwire is still available in 2010 through Hitachi. There are other competitive discrete wiring technologies that have been developed (Jumatech [2]).

Since it was quite easy to stack interconnections (wires) inside the embedding matrix, the approach allowed designers to forget completely about the routing of wires (usually a time-consuming operation of PCB design): Anywhere the designer needs a connection, the machine will draw a wire in straight line from one location/pin to another. This led to very short design times (no complex algorithms to use even for high density designs) as well as reduced crosstalk (which is worse when wires run parallel to each other—which almost never happens in Multiwire), though the cost is too high to compete with cheaper PCB technologies when large quantities are needed.

Surface-mount technology

Main article: Surface-mount technology
 

Surface mount components, including resistors, transistors and an integrated circuit

Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s and became widely used by the mid 1990s. Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly on to the PCB surface. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labour costs and greatly increasing production and quality rates. Carrier Tapes provide a stable and protective environment for Surface mount devices (SMDs) which can be one-quarter to one-tenth of the size and weight, and passive components can be one-half to one-quarter of the cost of corresponding through-hole parts. However, integrated circuits are often priced the same regardless of the package type, because the chip itself is the most expensive part. As of 2006, some wire-ended components, such as small-signal switch diodes, e.g. 1N4148, are actually significantly cheaper than corresponding SMD versions.

See also

Nuvola apps ksim.png Electronics portal
 

Schematic Capture. (KiCAD)

 

PCB layout. (KiCAD)

 

3D View. (KiCAD)

  • Breadboard
  • C.I.D.+
  • Design for manufacturability (PCB)
  • Electronic packaging
  • Electronic waste
  • Multi-Chip Module
  • Occam Process – another process for the manufacturing of PCBs
PCB Materials
  • Conductive ink
  • Heavy copper
  • Laminate materials:
    • BT-Epoxy
    • Composite epoxy material, CEM-1,5
    • Cyanate Ester
    • FR-2
    • FR-4, the most common PCB material
    • Polyimide
    • PTFE, Polytetrafluoroethylene (Teflon)
PCB layout software
  • List of EDA companies
  • Comparison of EDA software

http://creativecommons.org/licenses/by-sa/3.0/

Category : Analog Circuit Board Repair | Electronic repair service | Electronic Repair Services | Industrial Controls Repair | Industrial Repair Service | Blog
1
Apr

Service

If you need AC Tech & AC Technology Drive Repair, Industrial Repair Group is your go to partner for dependable service.

Industrial Repair Group performs extensive component level repairs, touching up solder traces, replacing bad components, as well as full testing of ICs, PALs, EPROMs, GALs, surface mounted components and much more. Every AC Tech & AC Technology Drive Repair is subjected to dynamic function tests to verify successful repair and then backed by our 18 month repair guarantee. Sealers and conformal coatings are re-applied as needed with each repair restoring your equipment back to its original OEM specs.

Industrial Repair Group is more than a service provider for your industry. We are a partner and a dedicated resource for your team members to rely upon. Feel confident that we don't play the lingo game. We are real people, with real goals. Our company is always open minded and intent on isolating problems to keep organizations up and running 24/7. We are a leading service provider that believes educated personal is the best policy.

INDUSTRIAL REPAIR GROUP FAST QUOTE

Get a Repair Quote

Get a Fast Quote for your AC Tech & AC Technology Drive Repair now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How AC Technology Drives Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How AC Drives Operate, please follow this link: IRG-AC-Drive

How Variable-Frequency Drives Operate

A variable-frequency drive (VFD), also known as an AC Drive, is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor.[1][2][3] A variable frequency drive is a specific type of adjustable-speed drive. Variable-frequency drives are also known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives, microdrives or inverter drives. Since the voltage is varied along with frequency, these are sometimes also called VVVF (variable voltage variable frequency) drives.

Variable-frequency drives are widely used. In ventilation systems for large buildings, variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. They are also used on pumps, elevator, conveyor and machine tool drives.

VFD types

All VFDs use their output devices (IGBTs, transistors, thyristors) only as switches, turning them only on or off. Using a linear device such as a transistor in its linear mode is impractical for a VFD drive, since the power dissipated in the drive devices would be about as much as the power delivered to the load.

Drives can be classified as:

  • Constant voltage
  • Constant current
  • Cycloconverter

In a constant voltage converter, the intermediate DC link voltage remains approximately constant during each output cycle. In constant current drives, a large inductor is placed between the input rectifier and the output bridge, so the current delivered is nearly constant. A cycloconverter has no input rectifier or DC link and instead connects each output terminal to the appropriate input phase.

The most common type of packaged VF drive is the constant-voltage type, using pulse width modulation to control both the frequency and effective voltage applied to the motor load.

VFD system description

VFD system

A variable frequency drive system generally consists of an AC motor, a controller and an operator interface.[4][5]

VFD motor

The motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors can be used, but three-phase motors are usually preferred. Various types of synchronous motors offer advantages in some situations, but induction motors are suitable for most purposes and are generally the most economical choice. Motors that are designed for fixed-speed operation are often used. Certain enhancements to the standard motor designs offer higher reliability and better VFD performance, such as MG-31 rated motors.[6]

VFD controller

Variable frequency drive controllers are solid state electronic power conversion devices. The usual design first converts AC input power to DC intermediate power using a rectifier or converter bridge. The rectifier is usually a three-phase, full-wave-diode bridge. The DC intermediate power is then converted to quasi-sinusoidal AC power using an inverter switching circuit. The inverter circuit is probably the most important section of the VFD, changing DC energy into three channels of AC energy that can be used by an AC motor. These units provide improved power factor, less harmonic distortion, and low sensitivity to the incoming phase sequencing than older phase controlled converter VFD’s. Since incoming power is converted to DC, many units will accept single-phase as well as three-phase input power (acting as a phase converter as well as a speed controller); however the unit must be derated when using single phase input as only part of the rectifier bridge is carrying the connected load.[7]

As new types of semiconductor switches have been introduced, these have promptly been applied to inverter circuits at all voltage and current ratings for which suitable devices are available. Introduced in the 1980s, the insulated-gate bipolar transistor (IGBT) became the device used in most VFD inverter circuits in the first decade of the 21st century.[8][9][10]

AC motor characteristics require the applied voltage to be proportionally adjusted whenever the frequency is changed in order to deliver the rated torque. For example, if a motor is designed to operate at 460 volts at 60 Hz, the applied voltage must be reduced to 230 volts when the frequency is reduced to 30 Hz. Thus the ratio of volts per hertz must be regulated to a constant value (460/60 = 7.67 V/Hz in this case). For optimum performance, some further voltage adjustment may be necessary especially at low speeds, but constant volts per hertz is the general rule. This ratio can be changed in order to change the torque delivered by the motor.[11]

In addition to this simple volts per hertz control more advanced control methods such as vector control and direct torque control (DTC) exist. These methods adjust the motor voltage in such a way that the magnetic flux and mechanical torque of the motor can be precisely controlled.

The usual method used to achieve variable motor voltage is pulse-width modulation (PWM). With PWM voltage control, the inverter switches are used to construct a quasi-sinusoidal output waveform by a series of narrow voltage pulses with pseudosinusoidal varying pulse durations.[8][12]

Operation of the motors above rated name plate speed (base speed) is possible, but is limited to conditions that do not require more power than nameplate rating of the motor. This is sometimes called “field weakening” and, for AC motors, means operating at less than rated volts/hertz and above rated name plate speed. Permanent magnet synchronous motors have quite limited field weakening speed range due to the constant magnet flux linkage. Wound rotor synchronous motors and induction motors have much wider speed range. For example, a 100 hp, 460 V, 60 Hz, 1775 RPM (4 pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power.[13] At higher speeds the induction motor torque has to be limited further due to the lowering of the breakaway torque of the motor. Thus rated power can be typically produced only up to 130…150 % of the rated name plate speed. Wound rotor synchronous motors can be run even higher speeds. In rolling mill drives often 200…300 % of the base speed is used. Naturally the mechanical strength of the rotor and lifetime of the bearings is also limiting the maximum speed of the motor. It is recommended to consult the motor manufacturer if more than 150 % speed is required by the application.

PWM VFD Output Voltage Waveform

An embedded microprocessor governs the overall operation of the VFD controller. The main microprocessor programming is in firmware that is inaccessible to the VFD user. However, some degree of configuration programming and parameter adjustment is usually provided so that the user can customize the VFD controller to suit specific motor and driven equipment requirements.[8]

VFD operator interface

The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed. Additional operator control functions might include reversing and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display and/or indication lights and meters to provide information about the operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting pushbuttons, switches and other operator interface devices or control signals. A serial communications port is also often available to allow the VFD to be configured, adjusted, monitored and controlled using a computer.[8][14][15]

VFD operation

When an induction motor is connected to a full voltage supply, it draws several times (up to about 6 times) its rated current. As the load accelerates, the available torque usually drops a little and then rises to a peak while the current remains very high until the motor approaches full speed.

By contrast, when a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The starting frequency is typically 2 Hz or less. Thus starting at such a low frequency avoids the high inrush current that occurs when a motor is started by simply applying the utility (mains) voltage by turning on a switch. After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load without drawing excessive current. This starting method typically allows a motor to develop 150% of its rated torque while the VFD is drawing less than 50% of its rated current from the mains in the low speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed.[16] Note, however, that cooling of the motor is usually not good in the low speed range. Thus running at low speeds even with rated torque for long periods is not possible due to overheating of the motor. If continuous operation with high torque is required in low speeds an external fan is usually needed. The manufacturer of the motor and/or the VFD should specify the cooling requirements for this mode of operation.

In principle, the current on the motor side is in direct proportion of the torque that is generated and the voltage on the motor is in direct proportion of the actual speed, while on the network side, the voltage is constant, thus the current on line side is in direct proportion of the power drawn by the motor, that is U.I or C.N where C is torque and N the speed of the motor (we shall consider losses as well, neglected in this explanation).

(1) n stands for network (grid) and m for motor

(2) C stands for torque [Nm], U for voltage [V], I for current [A], and N for speed [rad/s]

We neglect losses for the moment :

Un.In = Um.Im (same power drawn from network and from motor)

Um.Im = Cm.Nm (motor mechanical power = motor electrical power)

Given Un is a constant (network voltage) we conclude : In = Cm.Nm/Un That is “line current (network) is in direct proportion of motor power”.

With a VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding a braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With 4-quadrants rectifiers (active-front-end), the VFD is able to brake the load by applying a reverse torque and reverting the energy back to the network.

Power line harmonics

While PWM allows for nearly sinusoidal currents to be applied to a motor load, the diode rectifier of the VFD takes roughly square-wave current pulses out of the AC grid, creating harmonic distortion in the power line voltage. When the VFD load size is small and the available utility power is large, the effects of VFD systems slicing small chunks out of AC grid generally go unnoticed. Further, in low voltage networks the harmonics caused by single phase equipment such as computers and TVs are such that they are partially cancelled by three-phase diode bridge harmonics.

However, when either a large number of low-current VFDs, or just a few very large-load VFDs are used, they can have a cumulative negative impact on the AC voltages available to other utility customers in the same grid.

When the utility voltage becomes misshapen and distorted the losses in other loads such as normal AC motors are increased. This may in the worst case lead to overheating and shorter operation life. Also substation transformers and compensation capacitors are affected, the latter especially if resonances are aroused by the harmonics.

In order to limit the voltage distortion the owner of the VFDs may be required to install filtering equipment to smooth out the irregular waveform. Alternately, the utility may choose to install filtering equipment of its own at substations affected by the large amount of VFD equipment being used. In high power installations decrease of the harmonics can be obtained by supplying the VSDs from transformers that have different phase shift.[17]

Further, it is possible to use instead of the diode rectifier a similar transistor circuit that is used to control the motor. This kind of rectifier is called active infeed converter in IEC standards. However, manufacturers call it by several names such as active rectifier, ISU (IGBT Supply Unit), AFE (Active Front End) or four quadrant rectifier. With PWM control of the transistors and filter inductors in the supply lines the AC current can be made nearly sinusoidal. Even better attenuation of the harmonics can be obtained by using an LCL (inductor-capacitor-inductor) filter instead of single three-phase filter inductor.

Additional advantage of the active infeed converter over the diode bridge is its ability to feed back the energy from the DC side to the AC grid. Thus no braking resistor is needed and the efficiency of the drive is improved if the drive is frequently required to brake the motor.

Application considerations

The output voltage of a PWM VFD consists of a train of pulses switched at the carrier frequency. Because of the rapid rise time of these pulses, transmission line effects of the cable between the drive and motor must be considered. Since the transmission-line impedance of the cable and motor are different, pulses tend to reflect back from the motor terminals into the cable. The resulting voltages can produce up to twice the rated line voltage for long cable runs, putting high stress on the cable and motor winding and eventual insulation failure. Increasing the cable or motor size/type for long runs and 480v or 600v motors will help offset the stresses imposed upon the equipment due to the VFD (modern 230v single phase motors not effected). At 460 V, the maximum recommended cable distances between VFDs and motors can vary by a factor of 2.5:1. The longer cables distances are allowed at the lower Carrier Switching Frequencies (CSF) of 2.5 kHz. The lower CSF can produce audible noise at the motors. For applications requiring long motor cables VSD manufacturers usually offer du/dt filters that decrease the steepness of the pulses. For very long cables or old motors with insufficient winding insulation more efficient sinus filter is recommended. Expect the older motor’s life to shorten. Purchase VFD rated motors for the application.

Further, the rapid rise time of the pulses may cause trouble with the motor bearings. The stray capacitance of the windings provide paths for high frequency currents that close through the bearings. If the voltage between the shaft and the shield of the motor exceeds few volts the stored charge is discharged as a small spark. Repeated sparking causes erosion in the bearing surface that can be seen as fluting pattern. In order to prevent sparking the motor cable should provide a low impedance return path from the motor frame back to the inverter. Thus it is essential to use a cable designed to be used with VSDs.[18]

In big motors a slip ring with brush can be used to provide a bypass path for the bearing currents. Alternatively isolated bearings can be used.

The 2.5 kHz and 5 kHz CSFs cause fewer motor bearing problems than the 20 kHz CSFs.[19] Shorter cables are recommended at the higher CSF of 20 kHz. The minimum CSF for synchronize tracking of multiple conveyors is 8 kHz.

The high frequency current ripple in the motor cables may also cause interference with other cabling in the building. This is another reason to use a motor cable designed for VSDs that has a symmetrical three-phase structure and good shielding. Further, it is highly recommended to route the motor cables as far away from signal cables as possible.[20]

Available VFD power ratings

Variable frequency drives are available with voltage and current ratings to match the majority of 3-phase motors that are manufactured for operation from utility (mains) power. VFD controllers designed to operate at 111 V to 690 V are often classified as low voltage units. Low voltage units are typically designed for use with motors rated to deliver 0.2 kW or 1/4 horsepower (hp) up to several megawatts. For example, the largest ABB ACS800 single drives are rated for 5.6 MW[21] . Medium voltage VFD controllers are designed to operate at 2,400/4,162 V (60 Hz), 3,000 V (50 Hz) or up to 10 kV. In some applications a step up transformer is placed between a low voltage drive and a medium voltage load. Medium voltage units are typically designed for use with motors rated to deliver 375 kW or 500 hp and above. Medium voltage drives rated above 7 kV and 5,000 or 10,000 hp should probably be considered to be one-of-a-kind (one-off) designs.[22]

Medium voltage drives are generally rated amongst the following voltages : 2,3 KV – 3,3 Kv – 4 Kv – 6 Kv – 11 Kv

The in-between voltages are generally possible as well. The power of MV drives is generally in the range of 0,3 to 100 MW however involving a range a several different type of drives with different technologies.

Dynamic braking

Using the motor as a generator to absorb energy from the system is called dynamic braking. Dynamic braking stops the system more quickly than coasting. Since dynamic braking requires relative motion of the motor’s parts, it becomes less effective at low speed and cannot be used to hold a load at a stopped position. During normal braking of an electric motor the electrical energy produced by the motor is dissipated as heat inside of the rotor, which increases the likelihood of damage and eventual failure. Therefore, some systems transfer this energy to an outside bank of resistors. Cooling fans may be used to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off.[23]

Regenerative variable-frequency drives

Regenerative AC drives have the capacity to recover the braking energy of an overhauling load and return it to the power system.[24]

Line regenerative variable frequency drives, showing capacitors(top cylinders)and inductors attached which filter the regenerated power.

[2][3][24][25][26][27]

Cycloconverters and current-source inverters inherently allow return of energy from the load to the line; voltage-source inverters require an additional converter to return energy to the supply.[28]

Regeneration is only useful in variable-frequency drives where the value of the recovered energy is large compared to the extra cost of a regenerative system,[28] and if the system requires frequent braking and starting. An example would be use in conveyor belt during manufacturing where it should stop for every few minutes, so that the parts can be assembled correctly and moves on. Another example is a crane, where the hoist motor stops and reverses frequently, and braking is required to slow the load during lowering. Regenerative variable-frequency drives are widely used where speed control of overhauling loads is required.

Brushless DC motor drives

Much of the same logic contained in large, powerful VFDs is also embedded in small brushless DC motors such as those commonly used in computer fans. In this case, the chopper usually converts a low DC voltage (such as 12 volts) to the three-phase current used to drive the electromagnets that turn the permanent magnet rotor.

See also

  • Regenerative variable-Frequency drives
  • Direct torque control
  • Frequency changer
  • Space Vector Modulation
  • Variable speed air compressor
  • Vector control (motor)
Category : AC Drive Repair | AC, DC, VFD, Servo Drives | DC Drive Repair | Electronic Repair Services | Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Servo Drive Repair | Spindle Drive Repair | VFD Drives | Blog
20
Mar

Service

If you need AC, DC, VFD, & Spindle Drive Repair Service, Industrial Repair Group is your go to partner for dependable service.

Industrial Repair Group performs extensive component level repairs, touching up solder traces, replacing bad components, as well as full testing of ICs, PALs, EPROMs, GALs, surface mounted components and much more. Every AC, DC, VFD, & Spindle Drive Repair Service is subjected to dynamic function tests to verify successful repair and then backed by our 18 month repair guarantee. Sealers and conformal coatings are re-applied as needed with each repair restoring your equipment back to its original OEM specs.

Industrial Repair Group is more than a service provider for your industry. We are a partner and a dedicated resource for your team members to rely upon. Feel confident that we don't play the lingo game. We are real people, with real goals. Our company is always open minded and intent on isolating problems to keep organizations up and running 24/7. We are a leading service provider that believes educated personal is the best policy.

INDUSTRIAL REPAIR GROUP FAST QUOTE

Get a Repair Quote

Get a Fast Quote for your AC, DC, VFD, & Spindle Drive Repair Service now by taking a moment to complete an IRG Fast Repair Quote. We will research you product and search our database to return a competitive repair estimate. Industrial Repair Group offers Guaranteed Repairs accompanied with an 18 Month Repair Warranty on All Industrial Repair Services.

Request an Industrial Repair Group Fast Quote

Supported Brands

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

How AC Drives Work

Thank you for choosing Industrial Repair Group. If you would like a printable version of How AC Drives Operate, please follow this link: IRG-AC-Drive

How Variable-Frequency Drives Operate

A variable-frequency drive (VFD), also known as an AC Drive, is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor.[1][2][3] A variable frequency drive is a specific type of adjustable-speed drive. Variable-frequency drives are also known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives, microdrives or inverter drives. Since the voltage is varied along with frequency, these are sometimes also called VVVF (variable voltage variable frequency) drives.

Variable-frequency drives are widely used. In ventilation systems for large buildings, variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. They are also used on pumps, elevator, conveyor and machine tool drives.

VFD types

All VFDs use their output devices (IGBTs, transistors, thyristors) only as switches, turning them only on or off. Using a linear device such as a transistor in its linear mode is impractical for a VFD drive, since the power dissipated in the drive devices would be about as much as the power delivered to the load.

Drives can be classified as:

  • Constant voltage
  • Constant current
  • Cycloconverter

In a constant voltage converter, the intermediate DC link voltage remains approximately constant during each output cycle. In constant current drives, a large inductor is placed between the input rectifier and the output bridge, so the current delivered is nearly constant. A cycloconverter has no input rectifier or DC link and instead connects each output terminal to the appropriate input phase.

The most common type of packaged VF drive is the constant-voltage type, using pulse width modulation to control both the frequency and effective voltage applied to the motor load.

VFD system description

VFD system

A variable frequency drive system generally consists of an AC motor, a controller and an operator interface.[4][5]

VFD motor

The motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors can be used, but three-phase motors are usually preferred. Various types of synchronous motors offer advantages in some situations, but induction motors are suitable for most purposes and are generally the most economical choice. Motors that are designed for fixed-speed operation are often used. Certain enhancements to the standard motor designs offer higher reliability and better VFD performance, such as MG-31 rated motors.[6]

VFD controller

Variable frequency drive controllers are solid state electronic power conversion devices. The usual design first converts AC input power to DC intermediate power using a rectifier or converter bridge. The rectifier is usually a three-phase, full-wave-diode bridge. The DC intermediate power is then converted to quasi-sinusoidal AC power using an inverter switching circuit. The inverter circuit is probably the most important section of the VFD, changing DC energy into three channels of AC energy that can be used by an AC motor. These units provide improved power factor, less harmonic distortion, and low sensitivity to the incoming phase sequencing than older phase controlled converter VFD’s. Since incoming power is converted to DC, many units will accept single-phase as well as three-phase input power (acting as a phase converter as well as a speed controller); however the unit must be derated when using single phase input as only part of the rectifier bridge is carrying the connected load.[7]

As new types of semiconductor switches have been introduced, these have promptly been applied to inverter circuits at all voltage and current ratings for which suitable devices are available. Introduced in the 1980s, the insulated-gate bipolar transistor (IGBT) became the device used in most VFD inverter circuits in the first decade of the 21st century.[8][9][10]

AC motor characteristics require the applied voltage to be proportionally adjusted whenever the frequency is changed in order to deliver the rated torque. For example, if a motor is designed to operate at 460 volts at 60 Hz, the applied voltage must be reduced to 230 volts when the frequency is reduced to 30 Hz. Thus the ratio of volts per hertz must be regulated to a constant value (460/60 = 7.67 V/Hz in this case). For optimum performance, some further voltage adjustment may be necessary especially at low speeds, but constant volts per hertz is the general rule. This ratio can be changed in order to change the torque delivered by the motor.[11]

In addition to this simple volts per hertz control more advanced control methods such as vector control and direct torque control (DTC) exist. These methods adjust the motor voltage in such a way that the magnetic flux and mechanical torque of the motor can be precisely controlled.

The usual method used to achieve variable motor voltage is pulse-width modulation (PWM). With PWM voltage control, the inverter switches are used to construct a quasi-sinusoidal output waveform by a series of narrow voltage pulses with pseudosinusoidal varying pulse durations.[8][12]

Operation of the motors above rated name plate speed (base speed) is possible, but is limited to conditions that do not require more power than nameplate rating of the motor. This is sometimes called “field weakening” and, for AC motors, means operating at less than rated volts/hertz and above rated name plate speed. Permanent magnet synchronous motors have quite limited field weakening speed range due to the constant magnet flux linkage. Wound rotor synchronous motors and induction motors have much wider speed range. For example, a 100 hp, 460 V, 60 Hz, 1775 RPM (4 pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power.[13] At higher speeds the induction motor torque has to be limited further due to the lowering of the breakaway torque of the motor. Thus rated power can be typically produced only up to 130…150 % of the rated name plate speed. Wound rotor synchronous motors can be run even higher speeds. In rolling mill drives often 200…300 % of the base speed is used. Naturally the mechanical strength of the rotor and lifetime of the bearings is also limiting the maximum speed of the motor. It is recommended to consult the motor manufacturer if more than 150 % speed is required by the application.

PWM VFD Output Voltage Waveform

An embedded microprocessor governs the overall operation of the VFD controller. The main microprocessor programming is in firmware that is inaccessible to the VFD user. However, some degree of configuration programming and parameter adjustment is usually provided so that the user can customize the VFD controller to suit specific motor and driven equipment requirements.[8]

VFD operator interface

The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed. Additional operator control functions might include reversing and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display and/or indication lights and meters to provide information about the operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting pushbuttons, switches and other operator interface devices or control signals. A serial communications port is also often available to allow the VFD to be configured, adjusted, monitored and controlled using a computer.[8][14][15]

VFD operation

When an induction motor is connected to a full voltage supply, it draws several times (up to about 6 times) its rated current. As the load accelerates, the available torque usually drops a little and then rises to a peak while the current remains very high until the motor approaches full speed.

By contrast, when a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The starting frequency is typically 2 Hz or less. Thus starting at such a low frequency avoids the high inrush current that occurs when a motor is started by simply applying the utility (mains) voltage by turning on a switch. After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load without drawing excessive current. This starting method typically allows a motor to develop 150% of its rated torque while the VFD is drawing less than 50% of its rated current from the mains in the low speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed.[16] Note, however, that cooling of the motor is usually not good in the low speed range. Thus running at low speeds even with rated torque for long periods is not possible due to overheating of the motor. If continuous operation with high torque is required in low speeds an external fan is usually needed. The manufacturer of the motor and/or the VFD should specify the cooling requirements for this mode of operation.

In principle, the current on the motor side is in direct proportion of the torque that is generated and the voltage on the motor is in direct proportion of the actual speed, while on the network side, the voltage is constant, thus the current on line side is in direct proportion of the power drawn by the motor, that is U.I or C.N where C is torque and N the speed of the motor (we shall consider losses as well, neglected in this explanation).

(1) n stands for network (grid) and m for motor

(2) C stands for torque [Nm], U for voltage [V], I for current [A], and N for speed [rad/s]

We neglect losses for the moment :

Un.In = Um.Im (same power drawn from network and from motor)

Um.Im = Cm.Nm (motor mechanical power = motor electrical power)

Given Un is a constant (network voltage) we conclude : In = Cm.Nm/Un That is “line current (network) is in direct proportion of motor power”.

With a VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding a braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With 4-quadrants rectifiers (active-front-end), the VFD is able to brake the load by applying a reverse torque and reverting the energy back to the network.

Power line harmonics

While PWM allows for nearly sinusoidal currents to be applied to a motor load, the diode rectifier of the VFD takes roughly square-wave current pulses out of the AC grid, creating harmonic distortion in the power line voltage. When the VFD load size is small and the available utility power is large, the effects of VFD systems slicing small chunks out of AC grid generally go unnoticed. Further, in low voltage networks the harmonics caused by single phase equipment such as computers and TVs are such that they are partially cancelled by three-phase diode bridge harmonics.

However, when either a large number of low-current VFDs, or just a few very large-load VFDs are used, they can have a cumulative negative impact on the AC voltages available to other utility customers in the same grid.

When the utility voltage becomes misshapen and distorted the losses in other loads such as normal AC motors are increased. This may in the worst case lead to overheating and shorter operation life. Also substation transformers and compensation capacitors are affected, the latter especially if resonances are aroused by the harmonics.

In order to limit the voltage distortion the owner of the VFDs may be required to install filtering equipment to smooth out the irregular waveform. Alternately, the utility may choose to install filtering equipment of its own at substations affected by the large amount of VFD equipment being used. In high power installations decrease of the harmonics can be obtained by supplying the VSDs from transformers that have different phase shift.[17]

Further, it is possible to use instead of the diode rectifier a similar transistor circuit that is used to control the motor. This kind of rectifier is called active infeed converter in IEC standards. However, manufacturers call it by several names such as active rectifier, ISU (IGBT Supply Unit), AFE (Active Front End) or four quadrant rectifier. With PWM control of the transistors and filter inductors in the supply lines the AC current can be made nearly sinusoidal. Even better attenuation of the harmonics can be obtained by using an LCL (inductor-capacitor-inductor) filter instead of single three-phase filter inductor.

Additional advantage of the active infeed converter over the diode bridge is its ability to feed back the energy from the DC side to the AC grid. Thus no braking resistor is needed and the efficiency of the drive is improved if the drive is frequently required to brake the motor.

Application considerations

The output voltage of a PWM VFD consists of a train of pulses switched at the carrier frequency. Because of the rapid rise time of these pulses, transmission line effects of the cable between the drive and motor must be considered. Since the transmission-line impedance of the cable and motor are different, pulses tend to reflect back from the motor terminals into the cable. The resulting voltages can produce up to twice the rated line voltage for long cable runs, putting high stress on the cable and motor winding and eventual insulation failure. Increasing the cable or motor size/type for long runs and 480v or 600v motors will help offset the stresses imposed upon the equipment due to the VFD (modern 230v single phase motors not effected). At 460 V, the maximum recommended cable distances between VFDs and motors can vary by a factor of 2.5:1. The longer cables distances are allowed at the lower Carrier Switching Frequencies (CSF) of 2.5 kHz. The lower CSF can produce audible noise at the motors. For applications requiring long motor cables VSD manufacturers usually offer du/dt filters that decrease the steepness of the pulses. For very long cables or old motors with insufficient winding insulation more efficient sinus filter is recommended. Expect the older motor’s life to shorten. Purchase VFD rated motors for the application.

Further, the rapid rise time of the pulses may cause trouble with the motor bearings. The stray capacitance of the windings provide paths for high frequency currents that close through the bearings. If the voltage between the shaft and the shield of the motor exceeds few volts the stored charge is discharged as a small spark. Repeated sparking causes erosion in the bearing surface that can be seen as fluting pattern. In order to prevent sparking the motor cable should provide a low impedance return path from the motor frame back to the inverter. Thus it is essential to use a cable designed to be used with VSDs.[18]

In big motors a slip ring with brush can be used to provide a bypass path for the bearing currents. Alternatively isolated bearings can be used.

The 2.5 kHz and 5 kHz CSFs cause fewer motor bearing problems than the 20 kHz CSFs.[19] Shorter cables are recommended at the higher CSF of 20 kHz. The minimum CSF for synchronize tracking of multiple conveyors is 8 kHz.

The high frequency current ripple in the motor cables may also cause interference with other cabling in the building. This is another reason to use a motor cable designed for VSDs that has a symmetrical three-phase structure and good shielding. Further, it is highly recommended to route the motor cables as far away from signal cables as possible.[20]

Available VFD power ratings

Variable frequency drives are available with voltage and current ratings to match the majority of 3-phase motors that are manufactured for operation from utility (mains) power. VFD controllers designed to operate at 111 V to 690 V are often classified as low voltage units. Low voltage units are typically designed for use with motors rated to deliver 0.2 kW or 1/4 horsepower (hp) up to several megawatts. For example, the largest ABB ACS800 single drives are rated for 5.6 MW[21] . Medium voltage VFD controllers are designed to operate at 2,400/4,162 V (60 Hz), 3,000 V (50 Hz) or up to 10 kV. In some applications a step up transformer is placed between a low voltage drive and a medium voltage load. Medium voltage units are typically designed for use with motors rated to deliver 375 kW or 500 hp and above. Medium voltage drives rated above 7 kV and 5,000 or 10,000 hp should probably be considered to be one-of-a-kind (one-off) designs.[22]

Medium voltage drives are generally rated amongst the following voltages : 2,3 KV – 3,3 Kv – 4 Kv – 6 Kv – 11 Kv

The in-between voltages are generally possible as well. The power of MV drives is generally in the range of 0,3 to 100 MW however involving a range a several different type of drives with different technologies.

Dynamic braking

Using the motor as a generator to absorb energy from the system is called dynamic braking. Dynamic braking stops the system more quickly than coasting. Since dynamic braking requires relative motion of the motor’s parts, it becomes less effective at low speed and cannot be used to hold a load at a stopped position. During normal braking of an electric motor the electrical energy produced by the motor is dissipated as heat inside of the rotor, which increases the likelihood of damage and eventual failure. Therefore, some systems transfer this energy to an outside bank of resistors. Cooling fans may be used to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off.[23]

Regenerative variable-frequency drives

Regenerative AC drives have the capacity to recover the braking energy of an overhauling load and return it to the power system.[24]

Line regenerative variable frequency drives, showing capacitors(top cylinders)and inductors attached which filter the regenerated power.

[2][3][24][25][26][27]

Cycloconverters and current-source inverters inherently allow return of energy from the load to the line; voltage-source inverters require an additional converter to return energy to the supply.[28]

Regeneration is only useful in variable-frequency drives where the value of the recovered energy is large compared to the extra cost of a regenerative system,[28] and if the system requires frequent braking and starting. An example would be use in conveyor belt during manufacturing where it should stop for every few minutes, so that the parts can be assembled correctly and moves on. Another example is a crane, where the hoist motor stops and reverses frequently, and braking is required to slow the load during lowering. Regenerative variable-frequency drives are widely used where speed control of overhauling loads is required.

Brushless DC motor drives

Much of the same logic contained in large, powerful VFDs is also embedded in small brushless DC motors such as those commonly used in computer fans. In this case, the chopper usually converts a low DC voltage (such as 12 volts) to the three-phase current used to drive the electromagnets that turn the permanent magnet rotor.

See also

  • Regenerative variable-Frequency drives
  • Direct torque control
  • Frequency changer
  • Space Vector Modulation
  • Variable speed air compressor
  • Vector control (motor)
Category : AC Drive Repair | AC, DC, VFD, Servo Drives | DC Drive Repair | Dexter VFD Repair | Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Servo Drive Repair | Spindle Drive Repair | VFD Drive Repair | VFD Drives | Blog
25
Mar

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

We support the following manufacturers and Industrial Repair Group is always seeking to serve special requests not listed below, please let us know if you have any questions!

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

INDUSTRIAL REPAIR GROUP FAST QUOTE

Category : AC Drive Repair | AC, DC, VFD, Servo Drives | Amateur Radio Amplifier Repair Service | Analog Circuit Board Repair | CNC Circuit Board Repair | DC Drive Repair | Dexter VFD Repair | Electronic Repair Services | Encoder Repair | HAM Radio Amplifier Repair | Industrial Controls Repair | Industrial Monitor Repair | Industrial Repair Group | Industrial Repair Service | Industrial Scale Repair | LCD Display Repair | Light Curtain Repair | Linear Amplifier Repair | Motor Soft Starter Repair | Optical Sensor Repair | Programmable Logic Controller - PLC Repair | Resource Lab | Rotary Encoder Repair | Rugged Display Repair | Servo Drive Repair | Spindle Drive Repair | Touchscreen Repair | VFD Drive Repair | VFD Drives | Blog
2
Mar

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

We support the following manufacturers and Industrial Repair Group is always seeking to serve special requests not listed below, please let us know if you have any questions!

AC TECHNOLOGY INDRAMAT
ACCO BABCOCK INC INDRAMAT & STEGMANN
ACCO BRISTOL INELCO & HS ELECTRONIC
ACCU SORT INEX INC
ACME ELECTRIC & STANDARD POWER INC INLAND MOTOR
ACOPIAN ACRISONS INFRANOR
ACROMAG & MOORE PRODUCTS INGERSOLL RAND
ADEPT TECH INIVEN
ADTECH POWER INC INNOVATIVE TECHNOLOGY INC
ADVANCE BALLAST INTEL
ADVANCED MICRO CONTROLS INTERMEC
ADVANCED MOTION INTERNATIONAL POWER
AEROTECH & MOTOROLA INTROL DESIGN
AGASTAT IRCON
AGILENT ISHIDA
AGR ISI ROBOTICS
AIRCO ISSC
ALLEN BRADLEY ISSC & SCI
AMBITECH IND JOHNSON CONTROLS & YOKOGAWA
AMETEK KTRON
AMGRAPH KTRON & KB ELECTRONICS
AMICON KB ELECTRONICS
AMPROBE KB ELECTRONICS & RIMA
ANAHEIM AUTOMATION KEARNEY & TRECKER
ANALOGIC KEB COMBIVERT
ANDOVER CONTROLSANILAM & SEQUENTIAL INFO SYS KEB COMBIVERT & TOSHIBA
ANORAD KEITHLEY & HOLADAY
ANRITSU KEPCO
AO SMITH & MAGNETEK KEYENCE CORP
APC KIKUSUI
APPLIED AUTOMATION KME INSTACOLOR
APPLIED MATERIAL KNIEL
APPLIED MICORSYSTEMS KOEHLER COMPANY
APV AUTOMATION KONE
APW MCLEAN KONSBERG
ARBURG KRAUSS MAFFEI
ARCAIR KRISTEL CORPORATION
ARCOM LABOD ELECTRONICS
ARGUS LAMBDA
AROS ELECTRONICS LAMBDA & QUALIDYNE CORP
ARPECO LANTECH
ARTESYN TECHNOLOGIES LEESON ELECTRIC CO
ASCO & ITT LEESONA & ELECTRIC REGULATOR
ASEA BROWN BOVERI & STROMBERG LEINE & LINDE
ASHE CONTROLS LENORD & BAUER
ASI CONTROLS LENZE
ASI KEYSTONE & ANALOGIC LEROY SOMER
ASR SERVOTRON LESTER ELECTRIC
ASSOCIATED RESEARCH LEUZE
ASTROSYSTEMS LH RESEARCH
ATC LINCOLN ELECTRIC
ATHENA LITTON
ATLAS LOVE CONTROLS
ATLA COPCO LOVEHOY & BOSTON
AUTOCON TECHNOLGIES INC LOYOLA
AUTOMATED PACKAGING LUST ELECTRONICS
AUTOMATION DIRECT MAGNETEK
AUTOMATION INTELLIGENCE MAGNETEK & GEMCO ELECTRIC
AUTOMATIX MAN ROLAND
AVERY MAPLE SYSTEMS
AVG AUTOMATION MARKEM
AYDON CONTROLS MARQUIP
B & K MARSCH
B & R MAHTSUSHITA ELECTRIC & FANUC
BABCOCK & ASEA BROWN BOVERI MAZAK
BAKER PERKINS MCC ELECTRONICS
BALANCE ENGINEERING MEMOTEC
BALDOR & ASR SERVOTRON MERRICK SCALE
BALWIN & BEI INDUSTRIAL ENCODER METRA INSTRUMENTS
BALL ELECTRONIC METTLER TOLEDO
BALUFF MHI CORRUGATING MACHINERY
BALOGH MIBUDENKI
BANNER ENGINEERING MICRO MEMORY
BARBER COLMAN MICRO MOTION
BARBER COLMAN MICROSWITCH
BARDAC MICROSWITCH & HONEYWELL
BARKSDALE MIKI PULLEY & BOSTON
BARR MULLIN MILLER ELECTRIC
BASLER ELECTRIC & WESTINGHOUSE MILLER ELECTRIC & LINCOLN ELECTRIC
BAUMULLER MINARIK ELECTRIC CO
BEI INDUSTRIAL ENCODER MINARIK ELECTRIC CO & LEESON ELECTRIC CO
BENDIX DYNAPATH MITUSUBISHI
DENDIX SHEFFIELD MOELLER ELECTRIC
BENSHAW MOOG
BENTLEY NEVADA MONTWILL& SCHAFER
BERGER LAHR MOTOROLA
BEST POWER MOTORLA SEMICONDUCTOR
BIKOR CORP MOTORTRONICS
BK PRECISION MSA
BOBST MTS SYSTEMS CO
BOGEN COMMUNICATION MULLER MARTINI & GRAPHA ELECTRONIC
BOMAC MURR ELEKTRONIK
BORG WARNER & DANFOSS NACHI
BOSCH NATIONAL CONTROLS
BOSCHERT & ARTESYN TECHNOLOGIES NEMATRON CORP
BOSTON NEWPORT
BRANSON NEXT
BRIDGEPORT NIKKI DENSO
BURTON & EMERSON NIOBRARA R&D CORP
BUTLER AUTOMATIC NJE CORPORATION
CAROTRON NORDSON
CE INVALCO NORDSON & DANAHER CONTROLS
CHROMALOX NORTH AMERICAN MFG
CINCINNATI MILACRON & ADVANTAGE ELECTRONICS NORTHERN TELECOM
CLEAVELAND MOTION CONTROL NOVA
CONDOR NSD
CONRAC NUM
CONTRAVES NUMERIK
CONTREX OLEC
CONTROL CONCEPTS OKUMA
CONTROL TECHNOLGY INC OMEGA ENGINEERING
COSEL OMRON
COUTANT & LAMBDA OPTO 22
CROMPTON ORIENTAL MOTOR
CROWN ORMEC
CUSTOM SERVO OSG TAP & DIEP&H HARNISCHFEGER
CYBEREX PACKAGE CONTROLS
DANAHER CONTROLS PANALARM
DANAHER MOTION PARKER
DANFOSS & DART CONTROLS PAYNE ENGINEERING & BURTON
DART CONTROLS PEPPERL & FUCHS
DATA ACQUISITION SYS PJILLIPS & PHILLIPS PMA
DAYKIN PHOENIX CONTACT
DAYTRONIC PILZ
DEC PINNACLE SYSTEMS
DELTA PIONEER MAGNETICS
DELTA ELECTRONICS PLANAR SYSTEMS
DELTRON & POWER MATE POLYCOM
DEUTRONIC POLYSPEDE
DIGITEC POWER CONTROL SYSTEM
DISC INSTURMENTS & DANAHER CONTROLS POWER CONVERSION
DISPLAY TECH POWER ELECTRONICS
DOERR POWER GENERAL & WESTINGHOUSE
DOMINO PRINTING POWER MATE
DREXELBROOK POWER ONE
DRIVE CONTROL SYSTEMS POWER PROP
DUNKERMOTOREN POWER SOURCE
DYNAGE & BROWN & SHARPE POWER SWITCH CORP
DYNAMICS RESEARCH POWER SYSTEMS INC
DYNAPOWER & DANAHER CONTROLS POWER VOLT
DYNAPRO & FLUKE POWERTEC INDUSTIRAL MOTORS INC
DYNISCO PULS
EATON CORPORATION PYRAMID
EATON CORPORATION & DANAHER CONTROLS QEST
ECCI QUINDAR ELECTRONICS
EG&G RADIO ENERGIE
ELCIS RAMSEY TECHNOLOGY
ELCO RED LION CONTROLS & SABINA ELECTRIC
ELECTRIC REGULATOR RELIANCE ELECTRIC
ELECTRO CAM RENCO CORP
ELECTRO CRAFT & RELIANCE ELECTRIC ROBICON
ELECTROHOME ROSEMOUNT & WESTINGHOUSE
ELECTROL RTA PAVIA
ELECTROMOTIVE SABINA ELECTRIC
ELECTROSTATICS INC SAFTRONICS
ELGE SANYO
ELO TOUCH SYSTEMS SCHROFF & STYRKONSULT AB
ELPAC & CINCINNATI MILACRON SCI & ISSC
ELSTON ELECTRONICS SELTI
ELWOOD CORPORATION SEMCO
EMS INC SEQUENTIAL INFO SYS
ENCODER PRODUCTS SEW EURODRIVE & TOSHIBA
ETA SHINDENGEN
EUROTHERM CONTROLS SICK OPTIC ELECTRONIC
EXOR SIEMENS
FANUC SIEMENS MOORE
FANUC & GENERAL ELECTRIC SIERRACIN POWER SYSTEMS
FENWAL SIGMA INSTRUMENTS INC
FIFE CORP SMC & CONAIRSOCAPEL
FIREYE & ITT SOLA ELECTRIC
FIRING CIRCUITS SOLITECH
FISCHER & PORTER SONY
FISHER CONTROLS SORENSEN
FLUKE STANDARD POWER INC
FORNEY STATIC CONTROL SYSTEMS
FOXBORO STEGMANN & INDRAMAT
FOXBORO & BALSBAUGH SUMITOMO MACHINERY INC & TOSHIBA
FUJI ELECTRIC SUMTAK CORP
FUTEC SUNX LTD
GAI & ASEA BROWN BOVERI SUPERIOR ELECTRIC
GALIL MOTION CONTROLS SWEO ENGINEERING & ROCHESTER INSTRUMENT SYSTEMS
GD CALIFORNIA INC T&R ELECTRIC & SYRON ENGINEERING
GEM80 TAMAGAWA & RELIANCE ELECTRIC
GENERAL ELECTRIC TAPESWITCH
GENERAL ELECTRIC & FANUC TB WOODS & FUJI ELECTRIC
GIDDINGS & LEWIS TDK
GLENTEK TECNO ELETTRONICA
GOLDSTAR TECTROL
GORING KERR TEIJIN SEIKI
GOSSEN TEKEL
GRAHAM TODD PRODUCTS CORP
GRAINGER TOEI ELECTRIC
GRAPHA ELECTRONIC TOSHIBA
GREAT LAKES INSTRUMENTS TOTKU ELECTRIC & GENERAL ELECTRIC
GROUPE SCHNEIDER TRACO ENGINEERING
HAAS UNICO
HAMMOND UNIPOWER
HATHAWAY VAREC
HAYSEEN VECTOR VID
HEIDELBERG VERO ELECTRONICS & TELEMOTIVE
HEIDENHAIN CORP VIDEO JET
HIRATA VIEW TRONIX
HITACHI & FANUC VIVID
HITRON ELECTRONICS VOLGEN & POWER SOURCE
HOBART BROTHERS CO WARNER ELECTRIC & EMERSON
HOHER AUTOMATION WESTAMP INC & WESTINGHOUSE
HONEYWELL WESTINGHOUSE
HONEYWELL & NEMATRON CORP WHEDCO
HORNER ELECTRIC WIRE ELECTRIC
HUBBELL & FEMCO XENTEK INC
HUBNER & AMICON XYCOM & WARNER ELECTRIC
HURCO MFG CO YASKAWA ELECTRIC
IEE ZENITH
IMMERSION CORPORATION ZYCRON

INDUSTRIAL REPAIR GROUP FAST QUOTE

Category : AC Drive Repair | AC, DC, VFD, Servo Drives | Analog Circuit Board Repair | CNC Circuit Board Repair | DC Drive Repair | Electronic Repair Services | Encoder Repair | Industrial Controls Repair | Industrial Monitor Repair | Industrial Repair Group | Industrial Repair Service | Industrial Scale Repair | LCD Display Repair | Light Curtain Repair | Linear Amplifier Repair | Motor Soft Starter Repair | Optical Sensor Repair | Programmable Logic Controller - PLC Repair | Rotary Encoder Repair | Rugged Display Repair | Servo Drive Repair | Spindle Drive Repair | Touchscreen Repair | VFD Drive Repair | VFD Drives | Blog
14
Sep

Service

.

Industrial Repair Group performs extensive AC Drive Repair at the component level, touching up solder traces, replacing bad components, as well as full testing of ICs, PALs, EPROMs, GALs, surface mounted components and much more. Every AC Drive Repair is subjected to dynamic function tests to verify successful repair and then backed by our 18 month repair guarantee. Sealers and conformal coatings are re-applied as needed with each repair restoring your equipment back to its original OEM specs.

Industrial Repair Group is more than a service provider for your industry. We are a partner and a dedicated resource for your team members to rely upon. Feel confident that we don't play the lingo game. We are real people, with real goals. Our company is always open minded and intent on isolating problems to keep organizations up and running 24/7. We are a leading service provider that believes educated personal is the best policy.

INDUSTRIAL REPAIR GROUP FAST QUOTE

Request a Fast Quote

.

Get a Repair Fast Quote Now for your AC Drive Repair

Industrial Repair Group prides ourselves on giving accurate quotes. Rest assured that our first price quote is our only price quote. Our mission statement is simple: IRG will get the job done as promised and on schedule, our customers will be satisfied, and all repairs will be backed with our 18 month repair guarantee!

Service Guarantee

.

At Industrial Repair Group, our goal is to offer the best repair in the industry and the most competitive quotes. Our wide selection of services and industry leading 18 month repair guarantee are sure to provide you with the perfect repair solution for all of your industrial needs. We specialize in industrial electronics, electric motor rebuilds, and complete customer satisfaction.

ALL INDUSTRIAL REPAIR GROUP REPAIRS COME WITH AN 18 MONTH REPAIR GUARANTEE!

Summary of Warranty

Industrial Repair Group LLC. warrants to you, the ORIGINAL PURCHASER and ANY SUBSEQUENT OWNER of each Industrial Repair Group repair, for a period of one (1) year and six (6) months from the date of the repair (the "warranty period") that Industrial Repair Group's service is free of defects in materials and workmanship. We further warrant the repair regardless of the reason for failure, except as excluded in this Warranty.

Items Excluded From This Warranty

This Warranty is in effect only for failure of a Industrial Repair Group repair which occurred within the Warranty Period. It does not cover any product which has been damaged because of any intentional misuse, accident, negligence, ordinary wear and tear, cosmetic damage, or loss which is covered under any of your insurance contracts. The Industrial Repair Group Warranty also does not extend to the repaired products if the Industrial Repair Group LLC asset control number has been defaced, altered, or removed.

What Industrial Repair Group Will Do

We will remedy any defect, regardless of the reason for failure (except as excluded), by repair, replacement, or refund. We may not elect refund unless you agree, or unless we are unable to provide replacement, and repair is not practical or cannot be timely made. If a refund is elected, then you must make the defective or malfunctioning product available to us free and clear of all liens or other encumbrances. The refund will be equal to the actual repair price, not including interest, insurance, closing costs, and other finance charges less a reasonable depreciation on the product from the date of repair. Warranty work can only be performed at our fulfillment center. We will remedy the defect and ship the product from the service center within a reasonable time after receipt of the defective product. All expenses in remedying the defect, including surface shipping costs in the United States, will be borne by us. (You must bear the expense of shipping the product between any foreign country and the port of entry in the United States including the return shipment, and all taxes, duties, and other customs fees for such foreign shipments.)

How to Obtain Warranty Service

You must notify us of your need for warranty service within the warranty period. All components must be shipped in a factory pack, which, if needed, may be obtained from us free of charge. Corrective action will be taken within a reasonable time of the date of receipt of the defective product by us or our authorized service center. If the repairs made by us or our authorized service center are not satisfactory, notify us or our authorized service center immediately.

Disclaimer of Consequential and Incidental Damages.

You are not entitled to recover from us any incidental damages resulting from any defect in the Industrial Repair Group repair service. This includes any damage to another product or products resulting from such a defect.

Warranty Alterations

No person has the authority to enlarge, amend, or modify this Warranty. This Warranty is not extended by the length of time which you are deprived of the use of your equipment. Repairs and replacement parts provided under the terms of this IRG Warranty shall carry only the unexpired portion of this Industrial Repair Group Warranty.

How AC Drives Work

.

Thank you for choosing Industrial Repair Group. If you would like a printable version of How AC Drives Operate, please follow this link: IRG-AC-Drive

How Variable-Frequency Drives Operate

A variable-frequency drive (VFD), also known as an AC Drive, is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor.[1][2][3] A variable frequency drive is a specific type of adjustable-speed drive. Variable-frequency drives are also known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives, microdrives or inverter drives. Since the voltage is varied along with frequency, these are sometimes also called VVVF (variable voltage variable frequency) drives.

Variable-frequency drives are widely used. In ventilation systems for large buildings, variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. They are also used on pumps, elevator, conveyor and machine tool drives.

VFD types

All VFDs use their output devices (IGBTs, transistors, thyristors) only as switches, turning them only on or off. Using a linear device such as a transistor in its linear mode is impractical for a VFD drive, since the power dissipated in the drive devices would be about as much as the power delivered to the load.

Drives can be classified as:

  • Constant voltage
  • Constant current
  • Cycloconverter

In a constant voltage converter, the intermediate DC link voltage remains approximately constant during each output cycle. In constant current drives, a large inductor is placed between the input rectifier and the output bridge, so the current delivered is nearly constant. A cycloconverter has no input rectifier or DC link and instead connects each output terminal to the appropriate input phase.

The most common type of packaged VF drive is the constant-voltage type, using pulse width modulation to control both the frequency and effective voltage applied to the motor load.

VFD system description

VFD system

A variable frequency drive system generally consists of an AC motor, a controller and an operator interface.[4][5]

VFD motor

The motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors can be used, but three-phase motors are usually preferred. Various types of synchronous motors offer advantages in some situations, but induction motors are suitable for most purposes and are generally the most economical choice. Motors that are designed for fixed-speed operation are often used. Certain enhancements to the standard motor designs offer higher reliability and better VFD performance, such as MG-31 rated motors.[6]

VFD controller

Variable frequency drive controllers are solid state electronic power conversion devices. The usual design first converts AC input power to DC intermediate power using a rectifier or converter bridge. The rectifier is usually a three-phase, full-wave-diode bridge. The DC intermediate power is then converted to quasi-sinusoidal AC power using an inverter switching circuit. The inverter circuit is probably the most important section of the VFD, changing DC energy into three channels of AC energy that can be used by an AC motor. These units provide improved power factor, less harmonic distortion, and low sensitivity to the incoming phase sequencing than older phase controlled converter VFD’s. Since incoming power is converted to DC, many units will accept single-phase as well as three-phase input power (acting as a phase converter as well as a speed controller); however the unit must be derated when using single phase input as only part of the rectifier bridge is carrying the connected load.[7]

As new types of semiconductor switches have been introduced, these have promptly been applied to inverter circuits at all voltage and current ratings for which suitable devices are available. Introduced in the 1980s, the insulated-gate bipolar transistor (IGBT) became the device used in most VFD inverter circuits in the first decade of the 21st century.[8][9][10]

AC motor characteristics require the applied voltage to be proportionally adjusted whenever the frequency is changed in order to deliver the rated torque. For example, if a motor is designed to operate at 460 volts at 60 Hz, the applied voltage must be reduced to 230 volts when the frequency is reduced to 30 Hz. Thus the ratio of volts per hertz must be regulated to a constant value (460/60 = 7.67 V/Hz in this case). For optimum performance, some further voltage adjustment may be necessary especially at low speeds, but constant volts per hertz is the general rule. This ratio can be changed in order to change the torque delivered by the motor.[11]

In addition to this simple volts per hertz control more advanced control methods such as vector control and direct torque control (DTC) exist. These methods adjust the motor voltage in such a way that the magnetic flux and mechanical torque of the motor can be precisely controlled.

The usual method used to achieve variable motor voltage is pulse-width modulation (PWM). With PWM voltage control, the inverter switches are used to construct a quasi-sinusoidal output waveform by a series of narrow voltage pulses with pseudosinusoidal varying pulse durations.[8][12]

Operation of the motors above rated name plate speed (base speed) is possible, but is limited to conditions that do not require more power than nameplate rating of the motor. This is sometimes called “field weakening” and, for AC motors, means operating at less than rated volts/hertz and above rated name plate speed. Permanent magnet synchronous motors have quite limited field weakening speed range due to the constant magnet flux linkage. Wound rotor synchronous motors and induction motors have much wider speed range. For example, a 100 hp, 460 V, 60 Hz, 1775 RPM (4 pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power.[13] At higher speeds the induction motor torque has to be limited further due to the lowering of the breakaway torque of the motor. Thus rated power can be typically produced only up to 130…150 % of the rated name plate speed. Wound rotor synchronous motors can be run even higher speeds. In rolling mill drives often 200…300 % of the base speed is used. Naturally the mechanical strength of the rotor and lifetime of the bearings is also limiting the maximum speed of the motor. It is recommended to consult the motor manufacturer if more than 150 % speed is required by the application.

PWM VFD Output Voltage Waveform

An embedded microprocessor governs the overall operation of the VFD controller. The main microprocessor programming is in firmware that is inaccessible to the VFD user. However, some degree of configuration programming and parameter adjustment is usually provided so that the user can customize the VFD controller to suit specific motor and driven equipment requirements.[8]

VFD operator interface

The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed. Additional operator control functions might include reversing and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display and/or indication lights and meters to provide information about the operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting pushbuttons, switches and other operator interface devices or control signals. A serial communications port is also often available to allow the VFD to be configured, adjusted, monitored and controlled using a computer.[8][14][15]

VFD operation

When an induction motor is connected to a full voltage supply, it draws several times (up to about 6 times) its rated current. As the load accelerates, the available torque usually drops a little and then rises to a peak while the current remains very high until the motor approaches full speed.

By contrast, when a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The starting frequency is typically 2 Hz or less. Thus starting at such a low frequency avoids the high inrush current that occurs when a motor is started by simply applying the utility (mains) voltage by turning on a switch. After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load without drawing excessive current. This starting method typically allows a motor to develop 150% of its rated torque while the VFD is drawing less than 50% of its rated current from the mains in the low speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed.[16] Note, however, that cooling of the motor is usually not good in the low speed range. Thus running at low speeds even with rated torque for long periods is not possible due to overheating of the motor. If continuous operation with high torque is required in low speeds an external fan is usually needed. The manufacturer of the motor and/or the VFD should specify the cooling requirements for this mode of operation.

In principle, the current on the motor side is in direct proportion of the torque that is generated and the voltage on the motor is in direct proportion of the actual speed, while on the network side, the voltage is constant, thus the current on line side is in direct proportion of the power drawn by the motor, that is U.I or C.N where C is torque and N the speed of the motor (we shall consider losses as well, neglected in this explanation).

(1) n stands for network (grid) and m for motor

(2) C stands for torque [Nm], U for voltage [V], I for current [A], and N for speed [rad/s]

We neglect losses for the moment :

Un.In = Um.Im (same power drawn from network and from motor)

Um.Im = Cm.Nm (motor mechanical power = motor electrical power)

Given Un is a constant (network voltage) we conclude : In = Cm.Nm/Un That is “line current (network) is in direct proportion of motor power”.

With a VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding a braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With 4-quadrants rectifiers (active-front-end), the VFD is able to brake the load by applying a reverse torque and reverting the energy back to the network.

Power line harmonics

While PWM allows for nearly sinusoidal currents to be applied to a motor load, the diode rectifier of the VFD takes roughly square-wave current pulses out of the AC grid, creating harmonic distortion in the power line voltage. When the VFD load size is small and the available utility power is large, the effects of VFD systems slicing small chunks out of AC grid generally go unnoticed. Further, in low voltage networks the harmonics caused by single phase equipment such as computers and TVs are such that they are partially cancelled by three-phase diode bridge harmonics.

However, when either a large number of low-current VFDs, or just a few very large-load VFDs are used, they can have a cumulative negative impact on the AC voltages available to other utility customers in the same grid.

When the utility voltage becomes misshapen and distorted the losses in other loads such as normal AC motors are increased. This may in the worst case lead to overheating and shorter operation life. Also substation transformers and compensation capacitors are affected, the latter especially if resonances are aroused by the harmonics.

In order to limit the voltage distortion the owner of the VFDs may be required to install filtering equipment to smooth out the irregular waveform. Alternately, the utility may choose to install filtering equipment of its own at substations affected by the large amount of VFD equipment being used. In high power installations decrease of the harmonics can be obtained by supplying the VSDs from transformers that have different phase shift.[17]

Further, it is possible to use instead of the diode rectifier a similar transistor circuit that is used to control the motor. This kind of rectifier is called active infeed converter in IEC standards. However, manufacturers call it by several names such as active rectifier, ISU (IGBT Supply Unit), AFE (Active Front End) or four quadrant rectifier. With PWM control of the transistors and filter inductors in the supply lines the AC current can be made nearly sinusoidal. Even better attenuation of the harmonics can be obtained by using an LCL (inductor-capacitor-inductor) filter instead of single three-phase filter inductor.

Additional advantage of the active infeed converter over the diode bridge is its ability to feed back the energy from the DC side to the AC grid. Thus no braking resistor is needed and the efficiency of the drive is improved if the drive is frequently required to brake the motor.

Application considerations

The output voltage of a PWM VFD consists of a train of pulses switched at the carrier frequency. Because of the rapid rise time of these pulses, transmission line effects of the cable between the drive and motor must be considered. Since the transmission-line impedance of the cable and motor are different, pulses tend to reflect back from the motor terminals into the cable. The resulting voltages can produce up to twice the rated line voltage for long cable runs, putting high stress on the cable and motor winding and eventual insulation failure. Increasing the cable or motor size/type for long runs and 480v or 600v motors will help offset the stresses imposed upon the equipment due to the VFD (modern 230v single phase motors not effected). At 460 V, the maximum recommended cable distances between VFDs and motors can vary by a factor of 2.5:1. The longer cables distances are allowed at the lower Carrier Switching Frequencies (CSF) of 2.5 kHz. The lower CSF can produce audible noise at the motors. For applications requiring long motor cables VSD manufacturers usually offer du/dt filters that decrease the steepness of the pulses. For very long cables or old motors with insufficient winding insulation more efficient sinus filter is recommended. Expect the older motor’s life to shorten. Purchase VFD rated motors for the application.

Further, the rapid rise time of the pulses may cause trouble with the motor bearings. The stray capacitance of the windings provide paths for high frequency currents that close through the bearings. If the voltage between the shaft and the shield of the motor exceeds few volts the stored charge is discharged as a small spark. Repeated sparking causes erosion in the bearing surface that can be seen as fluting pattern. In order to prevent sparking the motor cable should provide a low impedance return path from the motor frame back to the inverter. Thus it is essential to use a cable designed to be used with VSDs.[18]

In big motors a slip ring with brush can be used to provide a bypass path for the bearing currents. Alternatively isolated bearings can be used.

The 2.5 kHz and 5 kHz CSFs cause fewer motor bearing problems than the 20 kHz CSFs.[19] Shorter cables are recommended at the higher CSF of 20 kHz. The minimum CSF for synchronize tracking of multiple conveyors is 8 kHz.

The high frequency current ripple in the motor cables may also cause interference with other cabling in the building. This is another reason to use a motor cable designed for VSDs that has a symmetrical three-phase structure and good shielding. Further, it is highly recommended to route the motor cables as far away from signal cables as possible.[20]

Available VFD power ratings

Variable frequency drives are available with voltage and current ratings to match the majority of 3-phase motors that are manufactured for operation from utility (mains) power. VFD controllers designed to operate at 111 V to 690 V are often classified as low voltage units. Low voltage units are typically designed for use with motors rated to deliver 0.2 kW or 1/4 horsepower (hp) up to several megawatts. For example, the largest ABB ACS800 single drives are rated for 5.6 MW[21] . Medium voltage VFD controllers are designed to operate at 2,400/4,162 V (60 Hz), 3,000 V (50 Hz) or up to 10 kV. In some applications a step up transformer is placed between a low voltage drive and a medium voltage load. Medium voltage units are typically designed for use with motors rated to deliver 375 kW or 500 hp and above. Medium voltage drives rated above 7 kV and 5,000 or 10,000 hp should probably be considered to be one-of-a-kind (one-off) designs.[22]

Medium voltage drives are generally rated amongst the following voltages : 2,3 KV – 3,3 Kv – 4 Kv – 6 Kv – 11 Kv

The in-between voltages are generally possible as well. The power of MV drives is generally in the range of 0,3 to 100 MW however involving a range a several different type of drives with different technologies.

Dynamic braking

Using the motor as a generator to absorb energy from the system is called dynamic braking. Dynamic braking stops the system more quickly than coasting. Since dynamic braking requires relative motion of the motor’s parts, it becomes less effective at low speed and cannot be used to hold a load at a stopped position. During normal braking of an electric motor the electrical energy produced by the motor is dissipated as heat inside of the rotor, which increases the likelihood of damage and eventual failure. Therefore, some systems transfer this energy to an outside bank of resistors. Cooling fans may be used to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off.[23]

Regenerative variable-frequency drives

Regenerative AC drives have the capacity to recover the braking energy of an overhauling load and return it to the power system.[24]

Line regenerative variable frequency drives, showing capacitors(top cylinders)and inductors attached which filter the regenerated power.

[2][3][24][25][26][27]

Cycloconverters and current-source inverters inherently allow return of energy from the load to the line; voltage-source inverters require an additional converter to return energy to the supply.[28]

Regeneration is only useful in variable-frequency drives where the value of the recovered energy is large compared to the extra cost of a regenerative system,[28] and if the system requires frequent braking and starting. An example would be use in conveyor belt during manufacturing where it should stop for every few minutes, so that the parts can be assembled correctly and moves on. Another example is a crane, where the hoist motor stops and reverses frequently, and braking is required to slow the load during lowering. Regenerative variable-frequency drives are widely used where speed control of overhauling loads is required.

Brushless DC motor drives

Much of the same logic contained in large, powerful VFDs is also embedded in small brushless DC motors such as those commonly used in computer fans. In this case, the chopper usually converts a low DC voltage (such as 12 volts) to the three-phase current used to drive the electromagnets that turn the permanent magnet rotor.

See also

  • Regenerative variable-Frequency drives
  • Direct torque control
  • Frequency changer
  • Space Vector Modulation
  • Variable speed air compressor
  • Vector control (motor)
Category : AC Drive Repair | AC, DC, VFD, Servo Drives | Industrial Controls Repair | Blog
8
Sep

INDUSTRIAL REPAIR GROUP FAST QUOTE
Industrial Repair Group performs extensive component level repairs, touching up solder traces, replacing bad components, as well as full testing of ICs, PALs, EPROMs, GALs, surface mounted components and much more. Every Power Supply Repair is subjected to dynamic function tests to verify successful repair and then backed by our 18 month repair guarantee. Sealers and conformal coatings are re-applied as needed with each repair restoring your equipment back to its original OEM specs.

To find out more about Industrial Repair Group’s Power Supply Repair Service, click here: Industrial Repair Group’s Power Supply Repair Service

A power supply is a device that supplies electrical energy to one or more electric loads. The term is most commonly applied to devices that convert one form of electrical energy to another, though it may also refer to devices that convert another form of energy (e.g., mechanical, chemical, solar) to electrical energy. A regulated power supply is one that controls the output voltage or current to a specific value; the controlled value is held nearly constant despite variations in either load current or the voltage supplied by the power supply’s energy source.

Every power supply must obtain the energy it supplies to its load, as well as any energy it consumes while performing that task, from an energy source. Depending on its design, a power supply may obtain energy from:

  • Electrical energy transmission systems. Common examples of this include power supplies that convert AC line voltage to DC voltage.
  • Energy storage devices such as batteries and fuel cells.
  • Electromechanical systems such as generators and alternators.
  • Solar power.

A power supply may be implemented as a discrete, stand-alone device or as an integral device that is hardwired to its load. In the latter case, for example, low voltage DC power supplies are commonly integrated with their loads in devices such as computers and household electronics.

Constraints that commonly affect power supplies include:

  • The amount of voltage and current they can supply.
  • How long they can supply energy without needing some kind of refueling or recharging (applies to power supplies that employ portable energy sources).
  • How stable their output voltage or current is under varying load conditions.
  • Whether they provide continuous or pulsed energy.

Power supplies types

Power supplies for electronic devices can be broadly divided into linear and switching power supplies. The linear supply is usually a relatively simple design, but it becomes increasingly bulky and heavy for high-current equipment due to the need for large mains-frequency transformers and heat-sinked electronic regulation circuitry. Linear voltage regulators produce regulated output voltage by means of an active voltage divider that consumes energy, thus making efficiency low. A switched-mode supply of the same rating as a linear supply will be smaller, is usually more efficient, but will be more complex.

Battery

A battery is an alternative to a line-operated power supply;[1] it is independent of the availability of mains electricity, suitable for portable equipment and use in locations without mains power. A battery consists of several electrochemical cells connected in series to provide the voltage desired. Batteries may be primary (able to supply current when constructed, discarded when drained) or secondary (rechargeable; can be charged, used, and recharged many times)

The primary cell first used was the carbon-zinc dry cell.[1] It had a voltage of 1.5 volts; later battery types have been manufactured, when possible, to give the same voltage per cell. Carbon-zinc and related cells are still used, but the alkaline battery delivers more energy per unit weight and is widely used. The most commonly used battery voltages are 1.5 (1 cell) and 9V (6 cells).

Various technologies of rechargeable battery are used. Types most commonly used are NiMH, and lithium ion and variants.

DC power supply

A home-made linear power supply (used here to power amateur radio equipment)

An AC powered unregulated power supply usually uses a transformer to convert the voltage from the wall outlet (mains) to a different, nowadays usually lower, voltage. If it is used to produce DC, a rectifier is used to convert alternating voltage to a pulsating direct voltage, followed by a filter, comprising one or more capacitors, resistors, and sometimes inductors, to filter out (smooth) most of the pulsation. A small remaining unwanted alternating voltage component at mains or twice mains power frequency (depending upon whether half- or full-wave rectification is used)—ripple—is unavoidably superimposed on the direct output voltage.

For purposes such as charging batteries the ripple is not a problem, and the simplest unregulated mains-powered DC power supply circuit consists of a transformer driving a single diode in series with a resistor.

Before the introduction of solid-state electronics, equipment used valves (vacuum tubes) which required high voltages; power supplies used step-up transformers, rectifiers, and filters to generate one or more direct voltages of some hundreds of volts, and a low alternating voltage for filaments. Only the most advanced equipment used expensive and bulky regulated power supplies.

AC power supply

An AC power supply typically takes the voltage from a wall outlet (mains supply, often 230v in Europe) and lowers it to the desired voltage (eg 9vac). As well as lowering the voltage some filtering may take place. An example use for an AC power supply is powering certain guitar effects pedals (e.g. the Digitech Whammy pedal) although it is more common for effects pedals to require DC.

Linear regulated power supply

The voltage produced by an unregulated power supply will vary depending on the load and on variations in the AC supply voltage. For critical electronics applications a linear regulator may be used to set the voltage to a precise value, stabilized against fluctuations in input voltage and load. The regulator also greatly reduces the ripple and noise in the output direct current. Linear regulators often provide current limiting, protecting the power supply and attached circuit from overcurrent.

Adjustable linear power supplies are common laboratory and service shop test equipment, allowing the output voltage to be adjusted over a range. For example, a bench power supply used by circuit designers may be adjustable up to 30 volts and up to 5 amperes output. Some can be driven by an external signal, for example, for applications requiring a pulsed output.

AC/DC supply

Main article: AC/DC (electricity)

In the past, mains electricity was supplied as DC in some regions, AC in others. Transformers cannot be used for DC, but a simple, cheap unregulated power supply could run directly from either AC or DC mains without using a transformer. The power supply consisted of a rectifier and a filter capacitor. When operating from DC, the rectifier was essentially a conductor, having no effect; it was included to allow operation from AC or DC without modification.

Switched-mode power supply

Main article: Switched-mode power supply

A computer’s switched mode power supply unit.

A switched-mode power supply (SMPS) works on a different principle. AC input, usually at mains voltage, is rectified without the use of a mains transformer, to obtain a DC voltage. This voltage is then switched on and off at a high speed by electronic switching circuitry, which may then pass through a high-frequency, hence small, light, and cheap, transformer or inductor. The duty cycle of the output square wave increases as power output requirements increase. Switched-mode power supplies are always regulated. If the SMPS uses a properly-insulated high-frequency transformer, the output will be electrically isolated from the mains, essential for safety.

The input power slicing occurs at a very high speed (typically 10 kHz — 1 MHz). High frequency and high voltages in this first stage permit much smaller transformers and smoothing capacitors than in a power supply operating at mains frequency, as linear supplies do. After the transformer secondary, the AC is again rectified to DC. To keep output voltage constant, the power supply needs a sophisticated feedback controller to monitor current drawn by the load.

SMPSs often include safety features such as current limiting or a crowbar circuit to help protect the device and the user from harm.[2] In the event that an abnormal high-current power draw is detected, the switched-mode supply can assume this is a direct short and will shut itself down before damage is done. For decades PC power supplies have provided a power good signal to the motherboard whose absence prevents operation when abnormal supply voltages are present.

SMPSs have an absolute limit on their minimum current output.[3] They are only able to output above a certain power level and cannot function below that point. In a no-load condition the frequency of the power slicing circuit increases to great speed, causing the isolated transformer to act as a Tesla coil, causing damage due to the resulting very high voltage power spikes. Switched-mode supplies with protection circuits may briefly turn on but then shut down when no load has been detected. A very small low-power dummy load such as a ceramic power resistor or 10-watt light bulb can be attached to the supply to allow it to run with no primary load attached.

Power factor has become a recent issue of concern for computer manufacturers. Switched mode power supplies have traditionally been a source of power line harmonics and have a very poor power factor. Many computer power supplies built in the last few years now include power factor correction built right into the switched-mode supply, and may advertise the fact that they offer 1.0 power factor.

By slicing up the sinusoidal AC wave into very small discrete pieces, a portion of unused alternating current stays in the power line as very small spikes of power that cannot be utilized by AC motors and results in waste heating of power line transformers. Hundreds of switched mode power supplies in a building can result in poor power quality for other customers surrounding that building, and high electric bills for the company if they are billed according to their power factor in addition to the actual power used. Filtering capacitor banks may be needed on the building power mains to suppress and absorb these negative power factor effects[citation needed].

Programmable power supply

Programmable power supplies

Programmable power supplies allow for remote control of the output voltage through an analog input signal or a computer interface such as RS232 or GPIB. Variable properties include voltage, current, and frequency (for AC output units). These supplies are composed of a processor, voltage/current programming circuits, current shunt, and voltage/current read-back circuits. Additional features can include overcurrent, overvoltage, and short circuit protection, and temperature compensation. Programmable power supplies also come in a variety of forms including modular, board-mounted, wall-mounted, floor-mounted or bench top.

Programmable power supplies can furnish DC, AC, or AC with a DC offset. The AC output can be either single-phase or three-phase. Single-phase is generally used for low-voltage, while three-phase is more common for high-voltage power supplies.

Programmable power supplies are now used in many applications. Some examples include automated equipment testing, crystal growth monitoring, and differential thermal analysis.[4]

Uninterruptible power supply

Main article: Uninterruptible power supply

An uninterruptible power supply (UPS) takes its power from two or more sources simultaneously. It is usually powered directly from the AC mains, while simultaneously charging a storage battery. Should there be a dropout or failure of the mains, the battery instantly takes over so that the load never experiences an interruption. Such a scheme can supply power as long as the battery charge suffices, e.g., in a computer installation, giving the operator sufficient time to effect an orderly system shutdown without loss of data. Other UPS schemes may use an internal combustion engine or turbine to continuously supply power to a system in parallel with power coming from the AC . The engine-driven generators would normally be idling, but could come to full power in a matter of a few seconds in order to keep vital equipment running without interruption. Such a scheme might be found in hospitals or telephone central offices.

High-voltage power supply

High voltage refers to an output on the order of hundreds or thousands of volts. High-voltage supplies use a linear setup to produce an output voltage in this range.

Additional features available on high-voltage supplies can include the ability to reverse the output polarity along with the use of circuit breakers and special connectors intended to minimize arcing and accidental contact with human hands. Some supplies provide analog inputs (i.e. 0-10V) that can be used to control the output voltage, effectively turning them into high-voltage amplifiers albeit with very limited bandwidth.

Voltage multipliers

Voltage multipliers, as the name implies, are circuits designed to multiply the input voltage. The input voltage may be doubled (voltage doubler), tripled (voltage tripler), quadrupled (voltage quadrupler), etc. Voltage multipliers are also power converters. An AC input is converted to a higher DC output. These circuits allow high voltages to be obtained using a much lower voltage AC source.

Typically, voltage multipliers are composed of half-wave rectifiers, capacitors, and diodes. For example, a voltage tripler consists of three half-wave rectifiers, three capacitors, and three diodes (see Cockcroft Walton Multiplier). Full-wave rectifiers may be used in a different configuration to achieve even higher voltages. Also, both parallel and series configurations are available. For parallel multipliers, a higher voltage rating is required at each consecutive multiplication stage, but less capacitance is required. The voltage capability of the capacitor limits the maximum output voltage.

Voltage multipliers have many applications. For example, voltage multipliers can be found in everyday items like televisions and photocopiers. Even more applications can be found in the laboratory, such as cathode ray tubes, oscilloscopes, and photomultiplier tubes.[5][6]

Power supply applications

Computer power supply

Main article: Computer power supply

A modern computer power supply is a switch with on and off supply designed to convert 110-240 V AC power from the mains supply, to several output both positive (and historically negative) DC voltages in the range + 12V,-12V,+5V,+5VBs and +3.3V. The first generation of computers power supplies were linear devices, but as cost became a driving factor, and weight became important, switched mode supplies are almost universal.

The diverse collection of output voltages also have widely varying current draw requirements, which are difficult to all be supplied from the same switched-mode source. Consequently most modern computer power supplies actually consist of several different switched mode supplies, each producing just one voltage component and each able to vary its output based on component power requirements, and all are linked together to shut down as a group in the event of a fault condition.

Welding power supply

Main article: Welding power supply

Arc welding uses electricity to melt the surfaces of the metals in order to join them together through coalescence. The electricity is provided by a welding power supply, and can either be AC or DC. Arc welding typically requires high currents typically between 100 and 350 amps. Some types of welding can use as few as 10 amps, while some applications of spot welding employ currents as high as 60,000 amps for an extremely short time. Older welding power supplies consisted of transformers or engines driving generators. More recent supplies use semiconductors and microprocessors reducing their size and weight.

AC adapter

Switched mode mobile phone charger

Main article: AC adapter

A linear or switched-mode power supply (or in some cases just a transformer) that is built into the top of a plug is known as a “plug pack”, “plug-in adapter”, “adapter block”, “domestic mains adapter” or just “power adapter”. Slang terms include “wall wart” and “power brick”. They are even more diverse than their names; often with either the same kind of DC plug offering different voltage or polarity, or a different plug offering the same voltage. “Universal” adapters attempt to replace missing or damaged ones, using multiple plugs and selectors for different voltages and polarities. Replacement power supplies must match the voltage of, and supply at least as much current as, the original power supply.

The least expensive AC units consist solely of a small transformer, while DC adapters include a few additional diodes. Whether or not a load is connected to the power adapter, the transformer has a magnetic field continuously present and normally cannot be completely turned off unless unplugged.

Because they consume standby power, they are sometimes known as “electricity vampires” and may be plugged into a power strip to allow turning them off. Expensive switched-mode power supplies can cut off leaky electrolyte-capacitors, use powerless MOSFETs, and reduce their working frequency to get a gulp of energy once in a while to power, for example, a clock, which would otherwise need a battery.

Overload protection

Power supplies often include some type of overload protection that protects the power supply from load faults (e.g., short circuits) that might otherwise cause damage by overheating components or, in the worst case, electrical fire. Fuses and circuit breakers are two commonly used mechanisms for overload protection.[1]

Fuses

A fuse is a piece of wire, often in a casing that improves its electrical characteristics. If too much current flows, the wire becomes hot and melts. This effectively disconnects the power supply from its load, and the equipment stops working until the problem that caused the overload is identified and the fuse is replaced.

There are various types of fuses used in power supplies.

  • fast blow fuses cut the power as quick as they can
  • slow blow fuses tolerate more short term overload
  • wire link fuses are just an open piece of wire, and have poorer overload characteristics than glass and ceramic fuses

Some power supplies use a very thin wire link soldered in place as a fuse.

Circuit breakers

One benefit of using a circuit breaker as opposed to a fuse is that it can simply be reset instead of having to replace the blown fuse. A circuit breaker contains an element that heats, bends and triggers a spring which shuts the circuit down. Once the element cools, and the problem is identified the breaker can be reset and the power restored.

Thermal cutouts

Some PSUs use a thermal cutout buried in the transformer rather than a fuse. The advantage is it allows greater current to be drawn for limited time than the unit can supply continuously. Some such cutouts are self resetting, some are single use only.

Current limiting

Some supplies use current limiting instead of cutting off power if overloaded. The two types of current limiting used are electronic limiting and impedance limiting. The former is common on lab bench PSUs, the latter is common on supplies of less than 3 watts output.

A foldback current limiter reduces the output current to much less than the maximum non-fault current.

Power conversion

The term “power supply” is sometimes restricted to those devices that convert some other form of energy into electricity (such as solar power and fuel cells and generators). A more accurate term for devices that convert one form of electric power into another form (such as transformers and linear regulators) is power converter. The most common conversion is from AC to DC.

Mechanical power supplies

  • Flywheels coupled to electrical generators or alternators
  • Compulsators
  • Explosively pumped flux compression generators

Terminology

  • SCP – Short circuit protection
  • OPP – Overpower (overload) protection
  • OCP – Overcurrent protection
  • OTP – Overtemperature protection
  • OVP – Overvoltage protection
  • UVP – Undervoltage protection
  • UPS – Uninterruptable Power Supply
  • PSU – Power Supply Unit
  • SMPSU – Switch-Mode Power Supply Unit

http://creativecommons.org/licenses/by-sa/3.0/

Category : Industrial Controls Repair | Industrial Repair Group | Industrial Repair Service | Blog
7
Sep

Service

Industrial Repair Group delivers fast and reliable Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code Service. We understand that damaged equipment can wreak havoc on your bottom line. We pride ourselves by delivering guaranteed repairs and fast turn around times when you need it most. We do this by partnering with you on each and every repair.

Please don't hesitate to call Industrial Repair Group and speak with one of our electronic repair specialist about your Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code. We are here to help!

A Trusted Leader in Industrial Electronic Repairs

1

Request a Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code Price Quote Today

  • Spend less time browsing for obsolete parts and more time working
  • Save up to 85% of the cost of a new replacement
  • Free evaluation and price quote on all Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code
  • Complete our online Fast Repair Quote or call us at (404) 474-8715
Get a Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code Quote

Shipping Information
2

Get the Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code Service Advantage

  • Every Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code comes with an 18 month repair warranty
  • We exceed most manufacturers' OEM warranties by more than 6 months
  • Most repairs are completed, tested, and returned within 10 business days
  • Priority Service is available when you need it most
3

The End Result

  • Guaranteed service, complete satisfaction, and a 10% competitor price guarantee
  • Reduced overhead and operational expenditure
  • Your business is up and running quickly

Best in Class Service with Every Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code

Every Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code is subjected to dynamic function testings to verify a successful repair and then backed by an Industrial Repair Group 18 Month Repair Warranty. Industrial Repair Group fully tests and replaces all high failure components such as ICs, PALs, EPROMs, GALs, and surface mounted components. Factory sealers and conformal coatings are re-applied as needed with each Dexter VFD Repair (Inverter Drive) F13 Error Code / Fault Code to restore your equipment back to its' OEM specs.

Call us today for a free consultation!

Industrial Repair Group

CLICK HERE FOR OUR SHIPPING FORM

Phone : 404-IRG-8715 (404-474-8715)

How Variable-Frequency Drives Operate

A variable-frequency drive (VFD) is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor.[1][2][3] A variable frequency drive is a specific type of adjustable-speed drive. Variable-frequency drives are also known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives, microdrives or inverter drives. Since the voltage is varied along with frequency, these are sometimes also called VVVF (variable voltage variable frequency) drives.

Variable-frequency drives are widely used. In ventilation systems for large buildings, variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. They are also used on pumps, elevator, conveyor and machine tool drives.

VFD types

All VFDs use their output devices (IGBTs, transistors, thyristors) only as switches, turning them only on or off. Using a linear device such as a transistor in its linear mode is impractical for a VFD drive, since the power dissipated in the drive devices would be about as much as the power delivered to the load.

Drives can be classified as:

  • Constant voltage
  • Constant current
  • Cycloconverter

In a constant voltage converter, the intermediate DC link voltage remains approximately constant during each output cycle. In constant current drives, a large inductor is placed between the input rectifier and the output bridge, so the current delivered is nearly constant. A cycloconverter has no input rectifier or DC link and instead connects each output terminal to the appropriate input phase.

The most common type of packaged VF drive is the constant-voltage type, using pulse width modulation to control both the frequency and effective voltage applied to the motor load.

VFD system description

VFD system

A variable frequency drive system generally consists of an AC motor, a controller and an operator interface.[4][5]

VFD motor

The motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors can be used, but three-phase motors are usually preferred. Various types of synchronous motors offer advantages in some situations, but induction motors are suitable for most purposes and are generally the most economical choice. Motors that are designed for fixed-speed operation are often used. Certain enhancements to the standard motor designs offer higher reliability and better VFD performance, such as MG-31 rated motors.[6]

VFD controller

Variable frequency drive controllers are solid state electronic power conversion devices. The usual design first converts AC input power to DC intermediate power using a rectifier or converter bridge. The rectifier is usually a three-phase, full-wave-diode bridge. The DC intermediate power is then converted to quasi-sinusoidal AC power using an inverter switching circuit. The inverter circuit is probably the most important section of the VFD, changing DC energy into three channels of AC energy that can be used by an AC motor. These units provide improved power factor, less harmonic distortion, and low sensitivity to the incoming phase sequencing than older phase controlled converter VFD’s. Since incoming power is converted to DC, many units will accept single-phase as well as three-phase input power (acting as a phase converter as well as a speed controller); however the unit must be derated when using single phase input as only part of the rectifier bridge is carrying the connected load.[7]

As new types of semiconductor switches have been introduced, these have promptly been applied to inverter circuits at all voltage and current ratings for which suitable devices are available. Introduced in the 1980s, the insulated-gate bipolar transistor (IGBT) became the device used in most VFD inverter circuits in the first decade of the 21st century.[8][9][10]

AC motor characteristics require the applied voltage to be proportionally adjusted whenever the frequency is changed in order to deliver the rated torque. For example, if a motor is designed to operate at 460 volts at 60 Hz, the applied voltage must be reduced to 230 volts when the frequency is reduced to 30 Hz. Thus the ratio of volts per hertz must be regulated to a constant value (460/60 = 7.67 V/Hz in this case). For optimum performance, some further voltage adjustment may be necessary especially at low speeds, but constant volts per hertz is the general rule. This ratio can be changed in order to change the torque delivered by the motor.[11]

In addition to this simple volts per hertz control more advanced control methods such as vector control and direct torque control (DTC) exist. These methods adjust the motor voltage in such a way that the magnetic flux and mechanical torque of the motor can be precisely controlled.

The usual method used to achieve variable motor voltage is pulse-width modulation (PWM). With PWM voltage control, the inverter switches are used to construct a quasi-sinusoidal output waveform by a series of narrow voltage pulses with pseudosinusoidal varying pulse durations.[8][12]

Operation of the motors above rated name plate speed (base speed) is possible, but is limited to conditions that do not require more power than nameplate rating of the motor. This is sometimes called “field weakening” and, for AC motors, means operating at less than rated volts/hertz and above rated name plate speed. Permanent magnet synchronous motors have quite limited field weakening speed range due to the constant magnet flux linkage. Wound rotor synchronous motors and induction motors have much wider speed range. For example, a 100 hp, 460 V, 60 Hz, 1775 RPM (4 pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power.[13] At higher speeds the induction motor torque has to be limited further due to the lowering of the breakaway torque of the motor. Thus rated power can be typically produced only up to 130…150 % of the rated name plate speed. Wound rotor synchronous motors can be run even higher speeds. In rolling mill drives often 200…300 % of the base speed is used. Naturally the mechanical strength of the rotor and lifetime of the bearings is also limiting the maximum speed of the motor. It is recommended to consult the motor manufacturer if more than 150 % speed is required by the application.

PWM VFD Output Voltage Waveform

An embedded microprocessor governs the overall operation of the VFD controller. The main microprocessor programming is in firmware that is inaccessible to the VFD user. However, some degree of configuration programming and parameter adjustment is usually provided so that the user can customize the VFD controller to suit specific motor and driven equipment requirements.[8]

VFD operator interface

The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed. Additional operator control functions might include reversing and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display and/or indication lights and meters to provide information about the operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting pushbuttons, switches and other operator interface devices or control signals. A serial communications port is also often available to allow the VFD to be configured, adjusted, monitored and controlled using a computer.[8][14][15]

VFD operation

When an induction motor is connected to a full voltage supply, it draws several times (up to about 6 times) its rated current. As the load accelerates, the available torque usually drops a little and then rises to a peak while the current remains very high until the motor approaches full speed.

By contrast, when a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The starting frequency is typically 2 Hz or less. Thus starting at such a low frequency avoids the high inrush current that occurs when a motor is started by simply applying the utility (mains) voltage by turning on a switch. After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load without drawing excessive current. This starting method typically allows a motor to develop 150% of its rated torque while the VFD is drawing less than 50% of its rated current from the mains in the low speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed.[16] Note, however, that cooling of the motor is usually not good in the low speed range. Thus running at low speeds even with rated torque for long periods is not possible due to overheating of the motor. If continuous operation with high torque is required in low speeds an external fan is usually needed. The manufacturer of the motor and/or the VFD should specify the cooling requirements for this mode of operation.

In principle, the current on the motor side is in direct proportion of the torque that is generated and the voltage on the motor is in direct proportion of the actual speed, while on the network side, the voltage is constant, thus the current on line side is in direct proportion of the power drawn by the motor, that is U.I or C.N where C is torque and N the speed of the motor (we shall consider losses as well, neglected in this explanation).

(1) n stands for network (grid) and m for motor

(2) C stands for torque [Nm], U for voltage [V], I for current [A], and N for speed [rad/s]

We neglect losses for the moment :

Un.In = Um.Im (same power drawn from network and from motor)

Um.Im = Cm.Nm (motor mechanical power = motor electrical power)

Given Un is a constant (network voltage) we conclude : In = Cm.Nm/Un That is “line current (network) is in direct proportion of motor power”.

With a VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding a braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With 4-quadrants rectifiers (active-front-end), the VFD is able to brake the load by applying a reverse torque and reverting the energy back to the network.

Power line harmonics

While PWM allows for nearly sinusoidal currents to be applied to a motor load, the diode rectifier of the VFD takes roughly square-wave current pulses out of the AC grid, creating harmonic distortion in the power line voltage. When the VFD load size is small and the available utility power is large, the effects of VFD systems slicing small chunks out of AC grid generally go unnoticed. Further, in low voltage networks the harmonics caused by single phase equipment such as computers and TVs are such that they are partially cancelled by three-phase diode bridge harmonics.

However, when either a large number of low-current VFDs, or just a few very large-load VFDs are used, they can have a cumulative negative impact on the AC voltages available to other utility customers in the same grid.

When the utility voltage becomes misshapen and distorted the losses in other loads such as normal AC motors are increased. This may in the worst case lead to overheating and shorter operation life. Also substation transformers and compensation capacitors are affected, the latter especially if resonances are aroused by the harmonics.

In order to limit the voltage distortion the owner of the VFDs may be required to install filtering equipment to smooth out the irregular waveform. Alternately, the utility may choose to install filtering equipment of its own at substations affected by the large amount of VFD equipment being used. In high power installations decrease of the harmonics can be obtained by supplying the VSDs from transformers that have different phase shift.[17]

Further, it is possible to use instead of the diode rectifier a similar transistor circuit that is used to control the motor. This kind of rectifier is called active infeed converter in IEC standards. However, manufacturers call it by several names such as active rectifier, ISU (IGBT Supply Unit), AFE (Active Front End) or four quadrant rectifier. With PWM control of the transistors and filter inductors in the supply lines the AC current can be made nearly sinusoidal. Even better attenuation of the harmonics can be obtained by using an LCL (inductor-capacitor-inductor) filter instead of single three-phase filter inductor.

Additional advantage of the active infeed converter over the diode bridge is its ability to feed back the energy from the DC side to the AC grid. Thus no braking resistor is needed and the efficiency of the drive is improved if the drive is frequently required to brake the motor.

Application considerations

The output voltage of a PWM VFD consists of a train of pulses switched at the carrier frequency. Because of the rapid rise time of these pulses, transmission line effects of the cable between the drive and motor must be considered. Since the transmission-line impedance of the cable and motor are different, pulses tend to reflect back from the motor terminals into the cable. The resulting voltages can produce up to twice the rated line voltage for long cable runs, putting high stress on the cable and motor winding and eventual insulation failure. Increasing the cable or motor size/type for long runs and 480v or 600v motors will help offset the stresses imposed upon the equipment due to the VFD (modern 230v single phase motors not effected). At 460 V, the maximum recommended cable distances between VFDs and motors can vary by a factor of 2.5:1. The longer cables distances are allowed at the lower Carrier Switching Frequencies (CSF) of 2.5 kHz. The lower CSF can produce audible noise at the motors. For applications requiring long motor cables VSD manufacturers usually offer du/dt filters that decrease the steepness of the pulses. For very long cables or old motors with insufficient winding insulation more efficient sinus filter is recommended. Expect the older motor’s life to shorten. Purchase VFD rated motors for the application.

Further, the rapid rise time of the pulses may cause trouble with the motor bearings. The stray capacitance of the windings provide paths for high frequency currents that close through the bearings. If the voltage between the shaft and the shield of the motor exceeds few volts the stored charge is discharged as a small spark. Repeated sparking causes erosion in the bearing surface that can be seen as fluting pattern. In order to prevent sparking the motor cable should provide a low impedance return path from the motor frame back to the inverter. Thus it is essential to use a cable designed to be used with VSDs.[18]

In big motors a slip ring with brush can be used to provide a bypass path for the bearing currents. Alternatively isolated bearings can be used.

The 2.5 kHz and 5 kHz CSFs cause fewer motor bearing problems than the 20 kHz CSFs.[19] Shorter cables are recommended at the higher CSF of 20 kHz. The minimum CSF for synchronize tracking of multiple conveyors is 8 kHz.

The high frequency current ripple in the motor cables may also cause interference with other cabling in the building. This is another reason to use a motor cable designed for VSDs that has a symmetrical three-phase structure and good shielding. Further, it is highly recommended to route the motor cables as far away from signal cables as possible.[20]

Available VFD power ratings

Variable frequency drives are available with voltage and current ratings to match the majority of 3-phase motors that are manufactured for operation from utility (mains) power. VFD controllers designed to operate at 111 V to 690 V are often classified as low voltage units. Low voltage units are typically designed for use with motors rated to deliver 0.2 kW or 1/4 horsepower (hp) up to several megawatts. For example, the largest ABB ACS800 single drives are rated for 5.6 MW[21] . Medium voltage VFD controllers are designed to operate at 2,400/4,162 V (60 Hz), 3,000 V (50 Hz) or up to 10 kV. In some applications a step up transformer is placed between a low voltage drive and a medium voltage load. Medium voltage units are typically designed for use with motors rated to deliver 375 kW or 500 hp and above. Medium voltage drives rated above 7 kV and 5,000 or 10,000 hp should probably be considered to be one-of-a-kind (one-off) designs.[22]

Medium voltage drives are generally rated amongst the following voltages : 2,3 KV – 3,3 Kv – 4 Kv – 6 Kv – 11 Kv

The in-between voltages are generally possible as well. The power of MV drives is generally in the range of 0,3 to 100 MW however involving a range a several different type of drives with different technologies.

Dynamic braking

Using the motor as a generator to absorb energy from the system is called dynamic braking. Dynamic braking stops the system more quickly than coasting. Since dynamic braking requires relative motion of the motor’s parts, it becomes less effective at low speed and cannot be used to hold a load at a stopped position. During normal braking of an electric motor the electrical energy produced by the motor is dissipated as heat inside of the rotor, which increases the likelihood of damage and eventual failure. Therefore, some systems transfer this energy to an outside bank of resistors. Cooling fans may be used to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off.[23]

Regenerative variable-frequency drives

Regenerative AC drives have the capacity to recover the braking energy of an overhauling load and return it to the power system.[24]

Line regenerative variable frequency drives, showing capacitors(top cylinders)and inductors attached which filter the regenerated power.

[2][3][24][25][26][27]

Cycloconverters and current-source inverters inherently allow return of energy from the load to the line; voltage-source inverters require an additional converter to return energy to the supply.[28]

Regeneration is only useful in variable-frequency drives where the value of the recovered energy is large compared to the extra cost of a regenerative system,[28] and if the system requires frequent braking and starting. An example would be use in conveyor belt during manufacturing where it should stop for every few minutes, so that the parts can be assembled correctly and moves on. Another example is a crane, where the hoist motor stops and reverses frequently, and braking is required to slow the load during lowering. Regenerative variable-frequency drives are widely used where speed control of overhauling loads is required.

Brushless DC motor drives

Much of the same logic contained in large, powerful VFDs is also embedded in small brushless DC motors such as those commonly used in computer fans. In this case, the chopper usually converts a low DC voltage (such as 12 volts) to the three-phase current used to drive the electromagnets that turn the permanent magnet rotor.

See also

  • Regenerative variable-Frequency drives
  • Direct torque control
  • Frequency changer
  • Space Vector Modulation
  • Variable speed air compressor
  • Vector control (motor)
DTR007S11A
DTR007S21U
DTR015S21U
DTR015S21U3
DTR015S21A
DTR022S21U
DTR022S21A
Category : AC Drive Repair | DC Drive Repair | Dexter VFD Repair | Electronic Repair Services | Industrial Controls Repair | VFD Drive Repair | VFD Drives | Blog
7
May

Industrial Repair Group prides ourselves on giving accurate quotes. Rest assured that our first price quote is our only price quote. Our mission statement is simple: IRG will get the job done as promised and on schedule, our customers will be satisfied, and all repairs will be backed with our 18 month repair guarantee!

Feel confident that we don’t play the lingo game. We are real people; with real goals. Our company is always open minded and intent on isolating problems to keep organizations up and running 24/7. We are a leading service provider that believes educated personal is the best policy.

Industrial Repair Group feels so confidence about our work that we guarantee that if Industrial Repair Group can’t perform your industrial electronic repair after examinationo we will ship it for Free directly to competitor of your choice so you get you up and running fast and minimize your downtime!*

Request a Fast Industrial Repair Quote Today!

 

Category : AC Drive Repair | Analog Circuit Board Repair | CNC Circuit Board Repair | DC Drive Repair | Electronic Repair Services | Encoder Repair | Industrial Controls Repair | Industrial Monitor Repair | Industrial Repair Group | Industrial Repair Service | Industrial Scale Repair | Light Curtain Repair | Linear Amplifier Repair | Motor Soft Starter Repair | Optical Sensor Repair | Programmable Logic Controller - PLC Repair | Rotary Encoder Repair | Servo Drive Repair | Spindle Drive Repair | Touchscreen Repair | Uncategorized | VFD Drive Repair | VFD Drives | Blog